Probabilistic Graphical Models

Undirected Graphical Models



Probabilistic Graphical Models

Directed graphical models
* Bayes Nets
« Conditional dependence

Undirected graphical models
* Markov random fields (MRFs)
 Factor graphs



From Markov Condition to Factorization
A Directed Acyclic Graph A joint Probability Distribution

P(A,B,C,D,E,F,G,H)

P(A, .., H)
= || PwiPas)

Ve{A,. H)

Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the
Markov condition: Every variable is independent from its non-
descendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph.
sound (dsep->ind) and
complete (dcon->dep in some distribution that factorizes
according to G)

If I(G) € I(P) then G is an |-Map for P
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Summary
BN: DAG + Distribution
If I(G) € I(P) then G is an |-Map for P

If G is an |-Map for P and every cthat stems from removing an edge
from G is not an I-Map for P, G is minimal I-Map for P

If I(G) = I(P) then G is a perfect map for P
If 1(G) =1(G"), G and G' are Markov Equivalent (I-Equivalent)

The Markov Boundary of Y is the set of Parents, Children and
Spouses of G



From Markov Condition to Factorization
A Directed Acyclic Graph A joint Probability Distribution
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Example: Misconception

Four students who get together in pairs to work on homeworks.

Only the following pairs meet:
Alice and Bob;
Bob and Charles;
Charles and Debbie;
Debbie and Alice.

(Alice and Charles just can’t stand each other, and Bob
and Debbie had a relationship that ended badly.)
Probability of having misunderstood something in the class



Example: Misconception

Four students who get together in pairs to work on homeworks.

Only the following pairs meet:
Alice and Bob;
Bob and Charles;
Charles and Debbie;
Debbie and Alice.

(Alice and Charles just can’t stand each other, and Bob Ind(A, C|B,D)
and Debbie had a relationship that ended badly.)

Ind(B, DA, C)
Probability of having misunderstood something in the class



Example: Misconception

Q’Q 090

(a) (b)



Pairwise Markov Networks

dO ao bO 30
@ a b! 5
dl a® bO 1
d' a' bl 100
c? d° c0 100
c’ d cl 1
cl do <0 1

c! d* 1 b cl 100




Factors

A factor ¢p(Xy ..., Xx)

¢:Val(Xq, ..., X)) 2 R

Scope = {X; ..., Xy}

Fundamental building block for defining distributions in high-dimensional
spaces

Set of basic operations for manipulating these probability distributions



Example: JPD

D G Prob.
d° gt 0.126
d° g2 0.168
> g3 0.126
dt gt 0.009
dadt g2 0.045
at  g° 0.126
d° gt 0.252
d® g2 0.0224
d g3 0.0056
at gt 0.06

at g2 0.036
at g3 0.024

Scope = {I, D, G}



Unnormalized measure

D G Prob.
d° gt 0.126
d° g2 0.168
> g3 0.126
dt gt 0.009
s N/ 0.045
at  g° 0.126
d° gt 0.252
d° g2 0.0224
d g3 0.0056
at gt 0.06

at g2 0.036
at g3 0.024

I D G Prob.
T g 0.126
0 gt g 0.009
g0 g 0.252
i gt g 0.06

Scope = {I, D}



Conditional Distribution

D G Prob.
A g7 0.126
a g° 0.168
a g° 0.126
dt gt 0.009
dadt g2 0.045
dt g3 0.126
d° gt 0.252
d° g2 0.0224
d g3 0.0056
at gt 0.06

at g2 0.036
at g3 0.024

g g° g°
i°d° | 0.3 0.4 0.3
i%d | 0.05 | 0.25 0.7
i5,d [ 09 | 0.08 0.02
it,d* [ 0.5 0.3 0.2

Scope = {I, D, G}




General Factors

D | A |¢(DA)
d’ | a® 100
d® | at 1
dt | a° 1
at | al 100

Scope = {D, A}



Factor Product

Let X, Y, and Z be three disjoint sets of variables, and let
¢,1(X,Y) and ¢, (Y, Z) be two factors. We define the factor
product ¢, X¢, to be a factor y: Val(X,Y,Z) » R as
follows:

IP(X, Y, Z) = ¢1(Xi Y) ) ¢2(Y, Z)
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0.1 = 0.09
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Factor Marginalization

1 1 —
b c 0.5-0.5=0.25 ¢(a1’ Cl) — 2 ¢(a1’ cl b)
bt c? 0.5-0.7=10.35 b
b? ct 0.8-0.1 =0.08
- —— | a' cl 033
b? c? 08-0.2=0.16
al c? 0.51
b? ct 0.1-0.5=0.05
a’ cl 0.05
bt c? 0.1:-0.7 =0.07
a’ c? 0.07
b? ct 0-0.1=0
a3 ct 0.24
b? c? 0:02=0
a’ c? 0.39
b? ct 0.3-0.5=0.15
bt c? 0.3:0.7=0.21
b2 cl 09-0.1=0.09 Let X be a set of variables, and Y ¢ X a variable. Let ¢(X,Y) be a factor. We define the
factor marginalization of Y in ¢, denoted Yy ¢, to be a factor i over X such that:
b? c? 09:0.2=0.18

Y0 = > BT
Y

This operation is also called summing out of Y in .



Factor Reduction

- [a* [ ]t 025

bl o 0.5-0.5=0.25
b1 c? 0.5-0.7 =0.35
b? o 0.8-0.1 =0.08
b? c? 0.8:0.2=0.16
bl o 0.1-0.5=0.05
b1 c? 0.1:-0.7=0.07
b? ct 0-01=0

b? c? 0:0.2=0

bl o 0.3:-0.5=0.15
b1 c? 0.3:0.7=0.21
b? o 0.9-0.1 =0.09
b? c? 0.9:0.2=0.18

al | b? ct 10.08

a? | bt | ¢t |0.05

a? | b? | ¢t 0

a> | bt | ¢t |0.15

a® | b? ct 10.09

Let ¢ (Y) be a factor, and U = u an assignment for U € Y. We define the
reduction of the factor ¢ to the context U = u, denoted ¢[U = u] (and
abbreviated ¢[u] ), to be a factor over scope Y’ =Y — U, such that

lul(y’) = ¢(y', w)

For U ¢ Y, we define ¢[u] tobe ¢p[U' = u'], whereU' =UNnY,andu’ =
u(U'), where u(U’) denotes the assignment in u to the variables in U’'.



Pairwise Markov Networks

dO ao bO 30
@ a b! 5
dl a® bO 1
d' a' bl 100
c? d° c0 100
c’ d cl 1
cl d0 <0 1
c! d* cl 100




Pairwise Markov Networks

Assignment Unnomalized P(A, B, C, D) = (p(A, B)(,b(B, C)(,b(C; D)(.b(D; A)
b | ¢ | d° 300000 1
T P(A,B,C,D) = - ¢(A,B)p(B,C)¢(C,D)p(D, A)
b c d 300000 Z
b | ¢t | d° 300000
po | [ a4t 30
bt | c® | d° 500
pt | ¢ | dt 500 d° a 100 a® b° 30
0 1
pt | ¢t | 4° 5000000 :1 a., X “ > ’
a 1 al b° 1
pt | ct [ at 500 d? at 100 o at bl 100
b0 | c0 | 4o 100 - o :
bO | c® | dt 1000000 o
b0 | oL | o <
100 c® d° 1 o b° c? 100
O cl dl 100 c? d?! 100 Bo cl 1
b1 Co dO 10 Cl do 100 bl C0 1
et dl 1 bt . 100
bt | ¢ | at 100000 c
bt | ¢t | a° 100000
bt | ¢t | at 100000




Eyeballing probabilities is hard

SEA SiA S%: ;%3

b° 0.13 & a® 100 pra—

d° al 1 0 1

1 a b
b 0.69 i .

e W
bO 0.14 @ a' 100 4 bl

b!  0.04 D : o

c? d° 1 ° B0 0
Cl

Ca d° 100 3 &0
ct d* | bl cl




Pairwise Markov Networks

A pairwise Markov network is an undirected graph whose nodes are Xj, ..., X, and each edge X; — X; is associated

with a factor (potential) ¢;; (X i —X;)




Example: Image Segmentation




Example: Image Segmentation

B e i X s [ D (7
St Y

Daphne Koller



More general Markov Networks

Consider a fully connected pairwise
Markov network over X3, ..., X,, where each

X; has d values. How many parameters

does the network have?

a o(dm)
b. 0(n%)
¢ 0(n%*d?)

d 0(nd)



More general Markov Networks

al b! ct 0.25
al b! c? 0.35
al | b? ct 0.08
at | b? c? 0.16
a? b1 ct 0.05
a® b! c? 0.07
a’? | b2 ct 0
a’> | b? c? 0
a3 b1 ct 0.15
O = {p1(D1), ..., P (D)} i I A W
a b? ct 0.09
a> | b? c? 0.18

pCb(Xl' '"JXn) — 1_[ ¢1(D1)



More general Markov Networks

al b! ct 0.25
al b! c? 0.35
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Zq)z z pq)(Xl,...,Xn)
X1..X



More general Markov Networks

al b! ct 0.25
al b! c? 0.35
al | b? ct 0.08
at | b? c? 0.16
a? b1 ct 0.05
a® b! c? 0.07
a’? | b2 ct 0
b = {¢1(D1)1 '¢R(Dk)} 2 | b2 2 0
~ a3 b1 ct 0.15
PCD(Xll ""Xn) — 1_[¢l(D1) 2 1 bl | o2 021
L a | b2 | 0.09
Zp = 2 Po(Xq, ... X)) 3 | b2 | o 0.18
X1.0Xn

1
qu(Xlr "'an) — Z_¢1_[¢1(D1)



Induced Markov Network

A-B if A and B appear
together in some factor.

b = {¢A,B,C (A4,B,C), ®ac.p (4,C, D)}



Factorization

A-B if A and B appear
together in some function.

We say G factorizes according to (over) P if there exists

a set of factors ® = {¢p;(D;), ..., P (Dy)} such that G
is the induced graph for @

A graph does not imply a unique factorization



Factorization

We say G factorizes according to (over) P if there exists

a set of factors ® = {¢p;(D;), ..., P (Dy)} such that G
is the induced graph for @

A-B if A and B appear
together in some function.

A minimal factorization is one where all
factors are maximal cliques (not a strict
subset of any other clique) in the MRF

A graph does not imply a unique factorization




Find the minimal factorization

Find a valid factorization that is
not minimal




Example

Find the minimal factorization

Find a valid factorization that is
not minimal

lp(xlt X2, X3)1/J(X3, X4)lp(X3, xS)
Y(x1, x2) P (xp, x3)9 (1, x3)P (X3, x4) P (X3, X5)




Separation in Markov Networks

o i Definition:

f/\/J X and Y are separated in H

~ given Z if there is no active

\ﬁ/\/ trailin H between X and Y
\ ‘ = given Z

Active trail: Undirected path

Conditioning on a node on the
path blocks the path



Factorization and Independence
Factorization = Independence

Theorem: If P factorizes over (according to) H, and sepy(X, Y |
Z) then Ind(X, Y|Z) in P

If P factorizes over H, then H is an I-map of P

Independence= Factorization

Theorem (Hammersley Clifford): If H is an I-Map for P, and P is
a positive distribution, then P factorizes over H



Markov Networks and DAGs

G

If G is a perfect map for P
Find an MN that is a perfect map for P



Markov Networks and DAGs

\/ \/

If G is a perfect map for P
Find an MN that is a perfect map for P
Going from BN to MN you lose some independencies



l-equivalence

Which networks are Markov
Equivalent to G?

D n



Practice

Find a MIN that is an I-Map of the probability
induced by G

D n



Practice: Separations




Log-linear Representation

P = H¢i(Di) P = exp (‘2 w;f;(Dj) )
i J

Original parameterization Log-linear parameterization

Features are functions (like factors) without the non-negativity
assumption.

Each feature has a single weight.

Different features can have the same scope.



Log-linear Representation

Qoo a01)
A0 A11

(X1, Xp) = 5 =1(X = iand X, = J)

One feature for each i,j value

b (X3 X;3) = exp (—TuWiafif (X1, X2))
Wi = —log(ay)



Example: Ising Models

E(xqy, .o, xp) = _Zwi,jxixj - Zuixi

<j {
Xi € {—1, 1}
fij(Xi X;) = X; - X;

1
P(X) x e TFX



Example: Ising Models

E(xqy, .o, xp) = _Zwi,jxixj - Zuixi

i<j i
Xi € {—1, 1}
fii(X0u X;) = X; - X;

1
P(X) x e TEX

As T grows, w;;’s become smaller



Example: Boltzman machine

S;€ {0, 1}

e w;; is the connection strength between unit j and unit i.
e s;isthe state, s; € {0,1}, of unit i.

e 0, is the bias of unit i in the global energy function. ( —6; is the activation
threshold for the unit.)

Model for neural activation



