
Probabilistic Graphical Models

Undirected Graphical Models



Probabilistic Graphical Models

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



From Markov Condition to Factorization

A Directed Acyclic Graph

A B

C D E

F

G H

A joint Probability Distribution 

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻

𝑃 𝐴,… , 𝐻

= '
!∈{$,…,'}

𝑃(𝑉|𝑃𝑎) 𝑉 )

Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph) 



Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the 
Markov condition: Every variable is independent from its non-
descendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph.
sound (dsep->ind) and 
complete (dcon->dep in some distribution that factorizes 
according to G)

If 𝐼 𝐺 ⊆ 𝐼(𝑃) then 𝐺 is an I-Map for 𝑃



Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the 
Markov condition: Every variable is independent from its non-
descendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph.
sound (dsep->ind) and 
complete (dcon->dep in some distribution that factorizes 
according to G)



Summary

BN: DAG + Distribution

If 𝐼 𝐺 ⊆ 𝐼(𝑃) then 𝐺 is an I-Map for 𝑃

If 𝐺 is an I-Map for 𝑃 and every çthat stems from removing an edge 
from 𝐺 is not an I-Map for 𝑃, 𝐺 is minimal I-Map for 𝑃

If 𝐼 𝐺 = 𝐼(𝑃) then 𝐺 is a perfect map for 𝑃

If  𝐼 𝐺 = 𝐼 𝐺! , 𝐺 and 𝐺′ are Markov Equivalent (I-Equivalent)

The Markov Boundary of 𝑌 is the set of Parents, Children and 
Spouses of 𝐺



From Markov Condition to Factorization
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F

G H
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Example: Misconception

Four students who get together in pairs to work on homeworks. 

Only the following pairs meet: 
Alice and Bob; 
Bob and Charles;
Charles and Debbie; 
Debbie and Alice.

(Alice and Charles just can’t stand each other, and Bob
and Debbie had a relationship that ended badly.)
Probability of having misunderstood something in the class



Example: Misconception

Four students who get together in pairs to work on homeworks. 

Only the following pairs meet: 
Alice and Bob; 
Bob and Charles;
Charles and Debbie; 
Debbie and Alice.

(Alice and Charles just can’t stand each other, and Bob
and Debbie had a relationship that ended badly.)
Probability of having misunderstood something in the class

Ind(A, C|B,D)
Ind(B, D|A, C)



Example: Misconception



A

D B

C

𝑑! 𝛼! 100

𝑑! 𝑎" 1

𝑑" 𝑎! 1

𝑑" 𝑎" 100

𝑎! 𝑏! 30

𝛼! b" 5

𝛼" b! 1

𝛼" b" 100

𝑐! 𝑑! 1

c! d" 100

c" d! 100

c" d" 1

𝑏! 𝑐! 100

𝑏! c" 1

𝑏" c! 1

𝑏 c" 100

Pairwise Markov Networks



A factor 𝜙(𝑋!, … ,𝑋#)

𝜙: Val 𝑋!, … , 𝑋# → ℝ

Scope = {𝑋!,… ,𝑋#}

Factors

Fundamental building block for defining distributions in high-dimensional 
spaces

Set of basic operations for manipulating these probability distributions



Example: JPD

𝐼 𝐷 𝐺 Prob.
𝑖! 𝑑! 𝑔" 0.126

i! 𝑑! 𝑔# 0.168

i! 𝑑! 𝑔$ 0.126

i! d" 𝑔" 0.009
i! d" 𝑔# 0.045

i! d" 𝑔$ 0.126

i" d! 𝑔" 0.252

i" d! 𝑔# 0.0224

i" d! 𝑔$ 0.0056

i" 𝑑" 𝑔" 0.06

i" d" 𝑔# 0.036

i" 𝑑" 𝑔$ 0.024

I D

G

Scope = {I, D, G}



Unnormalized measure

𝐼 𝐷 𝐺 Prob.
𝑖! 𝑑! 𝑔" 0.126

i! 𝑑! 𝑔# 0.168

i! 𝑑! 𝑔$ 0.126

i! d" 𝑔" 0.009
i! d" 𝑔# 0.045

i! d" 𝑔$ 0.126

i" d! 𝑔" 0.252

i" d! 𝑔# 0.0224

i" d! 𝑔$ 0.0056

i" 𝑑" 𝑔" 0.06

i" d" 𝑔# 0.036

i" 𝑑" 𝑔$ 0.024

I D

G

𝐼 𝐷 𝐺 Prob.
𝑖! 𝑑! 𝑔" 0.126

i! d" 𝑔" 0.009

i" d! 𝑔" 0.252

i" 𝑑" 𝑔" 0.06

Scope = {I, D}



Conditional Distribution

𝐼 𝐷 𝐺 Prob.
𝑖! 𝑑! 𝑔" 0.126

i! 𝑑! 𝑔# 0.168

i! 𝑑! 𝑔$ 0.126

i! d" 𝑔" 0.009
i! d" 𝑔# 0.045

i! d" 𝑔$ 0.126

i" d! 𝑔" 0.252

i" d! 𝑔# 0.0224

i" d! 𝑔$ 0.0056

i" 𝑑" 𝑔" 0.06

i" d" 𝑔# 0.036

i" 𝑑" 𝑔$ 0.024

I D

G

𝑔" 𝑔# 𝑔$

i!, d! 0.3 0.4 0.3

i!, d" 0.05 0.25 0.7

i", d! 0.9 0.08 0.02

i", d" 0.5 0.3 0.2

Scope = {I, D, G}



General Factors

D A 𝜙(D, A)
𝑑! 𝛼! 100
𝑑! 𝑎" 1
𝑑" 𝑎! 1
𝑑" 𝑎" 100

Scope = {D, A}



Factor Product

𝑎" 𝑏" 0.5

𝑎" 𝑏# 0.8

𝑎# 𝑏" 0.1

𝑎# 𝑏# 0

𝑎$ 𝑏" 0.3

𝑎$ 𝑏# 0.9

𝑏" 𝑐" 0.5

𝑏" 𝑐# 0.7

𝑏# 𝑐" 0.1

𝑏# 𝑐# 0.2

𝑎" 𝑏" 𝑐" 0.5 ⋅ 0.5 = 0.25

𝑎" 𝑏" 𝑐# 0.5 ⋅ 0.7 = 0.35

𝑎" 𝑏# 𝑐" 0.8 ⋅ 0.1 = 0.08

𝑎" 𝑏# 𝑐# 0.8 ⋅ 0.2 = 0.16

𝑎# 𝑏" 𝑐" 0.1 ⋅ 0.5 = 0.05

𝑎# 𝑏" 𝑐# 0.1 ⋅ 0.7 = 0.07

𝑎# 𝑏# 𝑐" 0 ⋅ 0.1 = 0

𝑎# 𝑏# 𝑐# 0 ⋅ 0.2 = 0

𝑎$ 𝑏" 𝑐" 0.3 ⋅ 0.5 = 0.15

𝑎$ 𝑏" 𝑐# 0.3 ⋅ 0.7 = 0.21

𝑎$ 𝑏# 𝑐" 0.9 ⋅ 0.1 = 0.09

𝑎$ 𝑏# 𝑐# 0.9 ⋅ 0.2 = 0.18

Let 𝑿, 𝒀, and 𝒁 be three disjoint sets of variables, and let 
𝜙"(𝑿, 𝒀) and 𝜙#(𝒀, 𝒁) be two factors. We define the factor 
product 𝜙"×𝜙# to be a factor 𝜓: Val(𝑿, 𝒀, 𝒁) ↦ ℝ as 
follows:

𝜓(𝑿, 𝒀, 𝒁) = 𝜙"(𝑿, 𝒀) ⋅ 𝜙#(𝒀, 𝒁)



Factor Marginalization

𝑎" 𝑏" 𝑐" 0.5 ⋅ 0.5 = 0.25

𝑎" 𝑏" 𝑐# 0.5 ⋅ 0.7 = 0.35

𝑎" 𝑏# 𝑐" 0.8 ⋅ 0.1 = 0.08

𝑎" 𝑏# 𝑐# 0.8 ⋅ 0.2 = 0.16

𝑎# 𝑏" 𝑐" 0.1 ⋅ 0.5 = 0.05

𝑎# 𝑏" 𝑐# 0.1 ⋅ 0.7 = 0.07

𝑎# 𝑏# 𝑐" 0 ⋅ 0.1 = 0

𝑎# 𝑏# 𝑐# 0 ⋅ 0.2 = 0

𝑎$ 𝑏" 𝑐" 0.3 ⋅ 0.5 = 0.15

𝑎$ 𝑏" 𝑐# 0.3 ⋅ 0.7 = 0.21

𝑎$ 𝑏# 𝑐" 0.9 ⋅ 0.1 = 0.09

𝑎$ 𝑏# 𝑐# 0.9 ⋅ 0.2 = 0.18

𝑎" 𝑐" 033

𝑎" 𝑐# 0.51

𝑎# 𝑐" 0.05

𝑎# 𝑐# 0.07

𝑎$ 𝑐" 0.24

𝑎$ 𝑐# 0.39

𝜙 𝑎", 𝑐" =>
$

𝜙 𝑎", 𝑐", 𝑏

Let 𝑿 be a set of variables, and 𝑌 ∉ 𝑿 a variable. Let 𝜙(𝑿, 𝑌) be a factor. We define the 
factor marginalization of 𝑌 in 𝜙, denoted ∑!𝜙, to be a factor 𝜓 over 𝑿 such that:

𝜓(𝑿) =/
!

𝜙(𝑿, 𝑌)

This operation is also called summing out of 𝑌 in 𝜓.



Factor Reduction

𝑎" 𝑏" 𝑐" 0.5 ⋅ 0.5 = 0.25

𝑎" 𝑏" 𝑐# 0.5 ⋅ 0.7 = 0.35

𝑎" 𝑏# 𝑐" 0.8 ⋅ 0.1 = 0.08

𝑎" 𝑏# 𝑐# 0.8 ⋅ 0.2 = 0.16

𝑎# 𝑏" 𝑐" 0.1 ⋅ 0.5 = 0.05

𝑎# 𝑏" 𝑐# 0.1 ⋅ 0.7 = 0.07

𝑎# 𝑏# 𝑐" 0 ⋅ 0.1 = 0

𝑎# 𝑏# 𝑐# 0 ⋅ 0.2 = 0

𝑎$ 𝑏" 𝑐" 0.3 ⋅ 0.5 = 0.15

𝑎$ 𝑏" 𝑐# 0.3 ⋅ 0.7 = 0.21

𝑎$ 𝑏# 𝑐" 0.9 ⋅ 0.1 = 0.09

𝑎$ 𝑏# 𝑐# 0.9 ⋅ 0.2 = 0.18

𝑎" 𝑏" 𝑐" 0.25

𝑎" 𝑏# 𝑐" 0.08

𝑎# 𝑏" 𝑐" 0.05

𝑎# 𝑏# 𝑐" 0

𝑎$ 𝑏" 𝑐" 0.15

𝑎$ 𝑏# 𝑐" 0.09

Let 𝜙(𝒀) be a factor, and 𝑼 = 𝒖 an assignment for 𝑼 ⊆ 𝒀. We define the 
reduction of the factor 𝜙 to the context 𝑼 = 𝒖, denoted 𝜙[𝑼 = 𝒖] (and 
abbreviated 𝜙[𝒖] ), to be a factor over scope 𝒀% = 𝒀 − 𝑼, such that

𝜙[𝒖] 𝒚% = 𝜙 𝒚%, 𝒖

For 𝑼 ⊄ 𝒀, we define 𝜙[𝒖] to be 𝜙 𝑼% = 𝒖% , where 𝑼% = 𝑼 ∩ 𝒀, and 𝒖% =
𝒖 𝑼% , where 𝒖 𝑼% denotes the assignment in 𝒖 to the variables in 𝑼%.



A

D B

C

𝑑! 𝛼! 100

𝑑! 𝑎" 1

𝑑" 𝑎! 1

𝑑" 𝑎" 100

𝑎! 𝑏! 30

𝛼! b" 5

𝛼" b! 1

𝛼" b" 100

𝑐! 𝑑! 1

c! d" 100

c" d! 100

c" d" 1

𝑏! 𝑐! 100

𝑏! c" 1

𝑏" c! 1

𝑏" c" 100

Pairwise Markov Networks



Assignment Unnomalized

𝑎" 𝑏" 𝑐" 𝑑" 300000

𝑎" 𝑏" 𝑐" 𝑑# 300000

𝑎" 𝑏" 𝑐# 𝑑" 300000

𝑎" 𝑏" 𝑐# 𝑑# 30

𝑎" 𝑏# 𝑐" 𝑑" 500

𝑎" 𝑏# 𝑐" 𝑑# 500

𝑎" 𝑏# 𝑐# 𝑑" 5000000

𝑎" 𝑏# 𝑐# 𝑑# 500

𝑎# 𝑏" 𝑐" 𝑑" 100

𝑎# 𝑏" 𝑐" 𝑑# 1000000

𝑎# 𝑏" 𝑐# 𝑑" 100

𝑎# 𝑏" 𝑐# 𝑑# 100

𝑎# 𝑏# 𝑐" 𝑑" 10

𝑎# 𝑏# 𝑐" 𝑑# 100000

𝑎# 𝑏# 𝑐# 𝑑" 100000

𝑎# 𝑏# 𝑐# 𝑑# 100000

Pairwise Markov Networks

@𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝜙 𝐴, 𝐵 𝜙 𝐵, 𝐶 𝜙(𝐶, 𝐷)𝜙 𝐷, 𝐴

𝑃 𝐴, 𝐵, 𝐶, 𝐷 =
1
𝑍𝜙 𝐴, 𝐵 𝜙 𝐵, 𝐶 𝜙(𝐶, 𝐷)𝜙 𝐷, 𝐴



𝑎! 𝑏! 0.13

𝛼! b" 0.69

𝛼" b! 0.14

𝛼" b" 0.04

Eyeballing probabilities is hard



A pairwise Markov network is an undirected graph whose nodes are 𝑋", … , 𝑋4 and each edge 𝑋5 − 𝑋6 is associated 

with a factor (potential) 𝜙56 8𝑋5 − 𝑋6 )

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

Pairwise Markov Networks



Daphne Koller

Example: Image Segmentation



(a)

Daphne Koller

(b) (c) (d)

Example: Image Segmentation



More general Markov Networks

A

D B

C

Consider a fully connected pairwise 

Markov network over 𝑋", … , 𝑋% where each 

𝑋& has 𝑑 values. How many parameters 

does the network have?

a. 𝑂 𝑑%

b. 𝑂 𝑛'

c. 𝑂 𝑛#𝑑#

d. 𝑂(𝑛𝑑)



More general Markov Networks

𝑎" 𝑏" 𝑐" 0.25

𝑎" 𝑏" 𝑐# 0.35

𝑎" 𝑏# 𝑐" 0.08

𝑎" 𝑏# 𝑐# 0.16

𝑎# 𝑏" 𝑐" 0.05

𝑎# 𝑏" 𝑐# 0.07

𝑎# 𝑏# 𝑐" 0

𝑎# 𝑏# 𝑐# 0

𝑎$ 𝑏" 𝑐" 0.15

𝑎$ 𝑏" 𝑐# 0.21

𝑎$ 𝑏# 𝑐" 0.09

𝑎$ 𝑏# 𝑐# 0.18

Φ = 𝜙" 𝑫" , … , 𝜙# 𝑫#
7𝑃$ 𝑋", … , 𝑋% =9

&

𝜙& 𝑫'

A

D B

C



More general Markov Networks

A

D B

C

𝑎" 𝑏" 𝑐" 0.25

𝑎" 𝑏" 𝑐# 0.35

𝑎" 𝑏# 𝑐" 0.08

𝑎" 𝑏# 𝑐# 0.16

𝑎# 𝑏" 𝑐" 0.05

𝑎# 𝑏" 𝑐# 0.07

𝑎# 𝑏# 𝑐" 0

𝑎# 𝑏# 𝑐# 0

𝑎$ 𝑏" 𝑐" 0.15

𝑎$ 𝑏" 𝑐# 0.21

𝑎$ 𝑏# 𝑐" 0.09

𝑎$ 𝑏# 𝑐# 0.18

Φ = 𝜙" 𝑫" , … , 𝜙# 𝑫#
7𝑃$ 𝑋", … , 𝑋% =9

&

𝜙& 𝑫'

𝑍! = *
"7…,"8

+𝑃! 𝑋%, … , 𝑋&



More general Markov Networks

𝑎" 𝑏" 𝑐" 0.25

𝑎" 𝑏" 𝑐# 0.35

𝑎" 𝑏# 𝑐" 0.08

𝑎" 𝑏# 𝑐# 0.16

𝑎# 𝑏" 𝑐" 0.05

𝑎# 𝑏" 𝑐# 0.07

𝑎# 𝑏# 𝑐" 0

𝑎# 𝑏# 𝑐# 0

𝑎$ 𝑏" 𝑐" 0.15

𝑎$ 𝑏" 𝑐# 0.21

𝑎$ 𝑏# 𝑐" 0.09

𝑎$ 𝑏# 𝑐# 0.18

Φ = 𝜙" 𝑫" , … , 𝜙# 𝑫#
7𝑃$ 𝑋", … , 𝑋% =9

&

𝜙& 𝑫'

𝑍! = *
"7…,"8

+𝑃! 𝑋%, … , 𝑋&

𝑃( 𝑋", … , 𝑋% =
1
𝑍(

P
&

𝜙& 𝑫)

A

D B

C



Induced  Markov Network

Φ = 𝜙0,1,2 𝐴, 𝐵, 𝐶 , 𝜙0,2,3 𝐴, 𝐶, 𝐷

A

D B

C

A-B if A and B appear 
together in some factor.



Factorization

A

D B

C

A-B if A and B appear 
together in some function.

A graph does not imply a unique factorization

We say G factorizes according to (over) P if there exists 
a set of factors Φ = 𝜙% 𝑫% , … , 𝜙' 𝑫' such that G 
is the induced graph for Φ



Factorization

A

D B

C

A-B if A and B appear 
together in some function.

A graph does not imply a unique factorization

We say G factorizes according to (over) P if there exists 
a set of factors Φ = 𝜙% 𝑫% , … , 𝜙' 𝑫' such that G 
is the induced graph for Φ

Aminimal factorization is one where all
factors are maximal cliques (not a strict
subset of any other clique) in theMRF



Example

Find the minimal factorization

Find a valid factorization that is 
not minimal



Example

Find the minimal factorization

Find a valid factorization that is 
not minimal

𝜓 𝑥", 𝑥#, 𝑥* 𝜓 𝑥*, 𝑥+ 𝜓 𝑥*, 𝑥,
𝜓 𝑥", 𝑥# 𝜓 𝑥#, 𝑥* 𝜓 𝑥", 𝑥* 𝜓 𝑥*, 𝑥+ 𝜓 𝑥*, 𝑥,



Separation in Markov Networks

Definition:
X and Y are separated in H 
given Z  if there is no active 
trail in H  between X and Y
given Z

Active trail: Undirected path
Conditioning on a node on the 
path blocks the path



Factorization and Independence

Factorization ⇒ Independence

Theorem: If P factorizes over  (according to) H, and sepH(X, Y |
Z) then Ind(X, Y|Z) in P

If P factorizes over H, then H is an I-map of P

Independence⇒ Factorization
Theorem (Hammersley Clifford): If H is an I-Map for P, and P is 
a positive distribution, then P factorizes over H



Markov Networks and DAGs

X Y

Z

If G is a perfect map for P
Find an MN that is a perfect map for P

G



Markov Networks and DAGs

X Y

Z

X Y

Z

If G is a perfect map for P
Find an MN that is a perfect map for P
Going from BN to MN you lose some independencies



I-equivalence

Which networks are Markov 
Equivalent to G?



Practice

Find a MN that is an I-Map of the probability 
induced by G



Practice: Separations



Log-linear Representation

"𝑃 =%
*

𝜙*(𝑫𝒊) "𝑃 = exp −.
,

𝑤,𝑓,(𝑫𝒋)

Original parameterization Log-linear parameterization

Features are functions (like factors) without the non-negativity 
assumption.
Each feature has a single weight.
Different features can have the same scope.



Log-linear Representation

𝑓./
*, = 𝐼(𝑋. = 𝑖 𝑎𝑛𝑑 𝑋/ = 𝑗)

One feature for each i,j value

𝜙 𝑋", 𝑋7 =
𝑎88 𝑎8"
𝑎"8 𝑎""

𝜙 𝑋7, 𝑋9 = exp −∑#:𝑤#:𝑓&;#: 𝑋", 𝑋7
𝑤#: = − log 𝑎#:



Example: Ising Models

𝐸 𝑥", … , 𝑥% = −>
&-.

𝑤&,.𝑥&𝑥. −>
&

𝑢&𝑥&

𝑥& ∈ {−1, 1}
𝑓&,. 𝑋& , 𝑋. = 𝑋& ⋅ 𝑋.

𝑃 𝑿 ∝ 𝑒Y
!
Z[ 𝑿



Example: Ising Models

𝐸 𝑥", … , 𝑥% = −>
&-.

𝑤&,.𝑥&𝑥. −>
&

𝑢&𝑥&

𝑥& ∈ {−1, 1}
𝑓&,. 𝑋& , 𝑋. = 𝑋& ⋅ 𝑋.

𝑃 𝑿 ∝ 𝑒Y
!
Z[ 𝑿

As T grows, 𝑤&.’s become smaller



Example: Boltzman machine

𝐸 = −6
\]^

𝑤\^𝑠\𝑠 + −6
\

𝜃\𝑠\

𝑠\∈ {0, 1}

• 𝑤&. is the connection strength between unit 𝑗 and unit 𝑖.
• 𝑠& is the state, 𝑠& ∈ {0,1}, of unit 𝑖.
• 𝜃& is the bias of unit 𝑖 in the global energy function. ( −𝜃& is the activation 

threshold for the unit.)

Model for neural activation


