Parametric Statistics

Sofia Triantafillou
sof.triantafillou@uoc.gr

University of Crete
Department of Mathematics and Applied Mathematics
1.6 Finite Sample Spaces
1.7 Counting Methods
1.8 Combinatorial Methods

- SKIP: Multinomial Coefficients
- SKIP: 1.10 Probability of a Union of Events
- SKIP:1.11 Statistical Swindles
2.1 Conditional Probability
2.3 Independent Events
2.4 Bayes Rule
- SKIP: 2.4 The Gambler's Ruin Problem

Probability Measure

We want to assign a real number $\mathbb{P}(A)$ to every element A of a σ-algebra \mathcal{A} to $[0,1]$ which represents how likely event A is to occur. This is called the probability of A.

- Axiom 1: $\mathbb{P}(A) \geq 0$ for every A
- Axiom 2: $\mathbb{P}(\Omega)=1$
- Axiom 3: for an infinite sequence A_{1}, A_{2}, \ldots of disjoint events

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

The triplet $(\Omega, \mathcal{A}, \mathbb{P})$ is called a probability space.

Discrete Probability Spaces.

For uncountable sample spaces, we need σ-algebras (which do not include all subsets of Ω) to avoid mathematical difficulties. Finite and countable sample spaces are much easier to think about:

Examples

- Consider a single toss of a coin. If we believe that heads (H) and tails (T) are equally likely, find an appropriate probability model.
- Consider a single roll of a die. if we believe that all six outcomes are equally likely, find an appropriate probability model.
- We toss an unbiased coin n times. What is an appropriate probability model?

Counting in a uniform (simple) probability space

In discrete sample spaces, if all outcomes of an experiments are considered equally likely, then for each event A,

$$
\mathbb{P}(A)=\frac{|A|}{|\Omega|}
$$

Example:

We toss a (fair) coin twice. $\quad \Omega$ has 36 elements:
$11,12, \ldots, 16,21, \ldots, 26, \ldots, 61, \ldots, 66$
Let's say we are interested in the event "at least one 6" To assign a probability to each possible event, we need to be able to count:
The number of points in Ω and A. To do so, we need some combinatorial methods.

Multiplication rule

General counting rule:

- r steps
- n_{r} choices at each step
- Then the number of choices are $n_{1} \times n_{2} \times \cdots \times n_{r}$

Example

- Number of license plates with 3 letters and 4 digits.
- Choose from A, B, E, Z, H, I, K, M, N, O, P, T, Y, X.
- Without repetitions:
- Permutations of a set with n elements:
- Number of subsets of set $\{1, \ldots, n\}$:

Combinations

Combinations

$\binom{n}{k}$: Number of distinct ways of choosing k elements from a collection of n objects (binomial coefficient)

- Choose the k items one at a time:
- Choose k items, then order them (k ! possible orders):

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- $\sum_{k=0}^{n}\binom{n}{k}:$

Conditional Probability

You bought a lottery ticket with numbers $15,1,30,26,17$. You win the lottery if you get all numbers correctly. The numbers are 1-30 (no repetitions).

- What are your chances of winning?
- You see that the first number is 15 , and then there is a power outage. What are your chances of winning now?
- We just described the conditional probability $P(A \mid B)$

Conditional Probability

Definition (Conditional Probability of A given B)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The probability of event A in the universe (sample space) where event B has already happened.

Conditional Probabilities are behave like probabilities!

- $P(A \mid B)+P\left(A^{C} \mid B\right)=1$
- $P(A \cup C \mid B)=P(A \mid B)+P(C \mid B)-P(A \cap C \mid B)$
- $P(B \mid B)=1$

Multiplication Rule for Conditional Probabilities

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
P(A \cap B)=P(A) P(B \mid A) \\
P(A \cap B)=P(B) P(A \mid B) \\
P(A \cap B \cap C)=P(A) P(B \mid A) P(C \mid A \cap B) \\
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{k=1}^{n} P\left(A_{i} \mid \bigcap_{j=1}^{k-1} A_{j}\right)
\end{gathered}
$$

Multiplication Rule Example

Example

- You toss two coins. What is the probability that the second toss is "heads" given that the first toss is heads?
- Coin tosses are independent (by construction).

Definition
Two events A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

We denote this as

$$
A \Perp B
$$

A set of events $\left\{A_{i}: i \in I\right\}$ is independent if

$$
\mathbb{P}\left(\cap_{i \in J} A_{i}\right)=\prod \mathbb{P}\left(A_{i}\right)
$$

for every finite subset J of I.

Independence as conditional probability

We already discussed how if we flip a coin twice, the probability of two heads is $\frac{1}{2} \times \frac{1}{2}$. This is because we consider the two tosses as independent. This means, the outcome of the first coin flip does not affect the outcome of the second flip.

- $\mathrm{P}($ Second toss is heads|first toss is heads $)=1 / 2=P($ Second toss is heads)
- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)$
- If I tell you that B has happened, this does not change your belief about how likely A is.

Conditional Independence

Just Independence in the new universe

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

Checking independence

- If we flip a coin twice, we typically assume that the flips are independent (i.e., the coin has no memory of previous flip).
- Sometimes, independence just comes up. Example: We roll a fair die and we are interested in the following two events:
A : "The outcome is an even number" B : "The outcome is one of the numbers $\{1,2,3,4\}$ "
- How about disjoint events?

Multiplication Rule Example \#2

Example

- You go past a clinic that gives tests for a rare (1 in 1000 people) disease. The clinic tells you that the tests are 95\% accurate, so
- $P\left(T^{+} \mid D+\right)=0.95$.
- $P\left(T^{-} \mid D^{-}\right)=0.95$
- What is the probability that you test positive and you don't have the disease?
- Your test comes out positive. What is the probability that you have the disease?

Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}
$$

Let's prove it

Why is Bayes Rule so important?

Very often, people confuse $P(A \mid B)$ and $P(B \mid A)$. These can be VERY different.

Think about it:
You read in the paper: "Half of the people hospitalized with covid-19 are fully vaccinated". Do you think that getting the vaccine lowers your chances of getting hospitalized?

Why is Bayes Rule so important?

- Vacc: Yes if vaccinated, zero otherwise
- Hosp: Yes if hospitalized, zero otherwise.
- $P($ Hosp \mid Vacc $)=0.01$
- $P($ Hosp $\mid \neg$ Vacc $)=0.2$
- Three different possibilities: $P($ Vacc $)=0.8,0.5,0.99$

Let' s use Bayes rule to compute $P(\operatorname{Vacc} \mid H o s p)$ for all three cases.

Review(1)

- Probability is a way to quantify the probability with which an event occurs.
- For discrete sample spaces, it is pretty easy to define a probability measure over the set of all possible events.
- We can use the axioms of probability to prove several properties of probability.

Review(2)

- Two events are called independent when knowing the value of one doesn't influence the probability of the value of the other.
- The conditional probability of A given B denotes the probability of event A in a world where B has occurred.
- Bayes rule connects $P(A \mid B)$ and $P(B \mid A)$. These two are confused but they are not the same.

Recitation Exercises

Section	Exercises
1.6	1,6
1.7	$4,5,6$
1.8	$2,3,4,12$
2.1	4,14
2.2	2,12
2.3	5,6

