- 1. Express $9x^2 + 12x + 10$ in the form $a(x+b)^2 + c$, where a, b and c are not functions of x.
- 2. Express the following expressions in terms of $\log(x)$ and $\log(y)$:
 - (a) $\log(x^3)$ (b) $\log(1/x^2)$ (c) $\log(x/y)$ (d) $\log(xy)$
- 3. Evaluate
 - (a) $\sum_{k=0}^{10} \frac{1}{4^k}$ (b) $\frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24} + \frac{1}{48} + \cdots$
- 4. Use integration by parts to evaluate $\int_0^1 x \exp(x) dx$.
- 5. Differentiate
 - (a) $\exp(-x^2)$ (b) $\log(x)$ (c) $\log(x^3)$ (d) $x^3 \exp(-x)$ (e) $\frac{x}{\exp(x)}$

6. Use integration by substitution so show that $\int_0^1 \frac{1}{\sqrt{z(1+\sqrt{z})}} dz = 2\log(2)$

- 7. Sketch rough plots of the following functions, indicating at least the point of intersection with the y axis
 - (a) $f(x) = \exp(-x), -\infty < x < \infty$
 - (b) $f(x) = x^2, -\infty < x < \infty$
 - (c) $f(x) = \exp(-x^2), -\infty < x < \infty$