Parametric Statistics

Sofia Triantafillou
sof.triantafillou@uoc.gr

University of Crete
Department of Mathematics and Applied Mathematics

1.4 Set Theory
 - SKIP: Real number uncountability
 1.5 Definition of Probability

What is probability?

Probability

is a language for quantifying uncertainty. It is a way to quantify how likely something is to occur.

Experiment

An experiment is any real or hypothetical process, in which the possible outcomes can be identified ahead of time. Events are sets of possible outcomes. Probability is then a way to describe how likely each event is.

Possible experiments

- We toss a coin 2 times.

Possible Outcomes:
Sample Space:
Examples of Events:
Probability of each event:

- We measure the temperature.

Possible Outcomes:
Sample Space:
Examples of events:
Probability of each event:

Sample Spaces

- The sample space is Ω is the set of possible outcomes of an experiment.
- $\omega \in \Omega$ is are called sample outcomes, or elements.
- Subsets of Ω are called events.

Example:
Coin tossing: If you toss a coin twice then

$$
\Omega=\{H H, H T, T H, T T\}
$$

The event that both tosses are heads are:
The event that the first toss is heads is:

Sample Space: Examples

Let ω be the outcome of measuring temperature. A sample space for this experiment is $\Omega=(-\infty, \infty)$. Is this accurate?

- What are the elements of Ω ?
- Example events: temperature is 15.5 .
- Example events: temperature is at least 10 but lower than 20 is $A=[10,20)$.

Probability Measure

We want to assign a real number $\mathbb{P}(A)$ to every event A which represents how likely event A is to occur. This is called the probability of A.

- Axiom $1: \mathbb{P}(A) \geq 0$ for every A
- Axiom 2: $\mathbb{P}(\Omega)=1$
- Axiom 3: for an infinite sequence A_{1}, A_{2}, \ldots of disjoint events

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

Properties of Probabilities (1)

Based on the axioms of probability, we can derive several properties:

- The probability of an impossible event is 0 :

$$
P(\emptyset)=0
$$

- Axiom 3 also holds for finite sequences of events:

$$
P\left(\bigcup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} P\left(A_{i}\right)
$$

The probability of any event is no more than 1 :

$$
P(A) \leq 1
$$

Properties of Probabilities (2)

The law of total probability
Let B_{1}, \ldots, B_{n} be a partition of the sample space. Then for any event A,

$$
P(A)=\sum_{i} P\left(A \cap B_{i}\right)
$$

Let's prove it for a very simple partition: B, B^{c}. Reminder:

- Set partitioning: $A=(A \cap B) \cup\left(A \cap B^{c}\right)$.
- Distribution law: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- $(A \cap B),\left(A \cap B^{c}\right)$ are disjoint.

Properties of Probabilities (3)

- For any events A and B,

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

Example.
Two coin tosses. Let H_{1} be the event that heads occurs on toss 1 and let H_{2} be the event that heads occurs on toss 2. If all outcomes are equally likely, what is the $\mathbb{P}\left(H_{1} \cup H_{2}\right)$?

Practice Exercises

$\begin{array}{ll}\text { Section } & \text { Exercises } \\ 1.4 & 1,6,8 \\ 1.5 & 3,4,8,10,14\end{array}$

