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Lecture Summary

9.1 Likelihood ratio tests
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Example: Power Function

» Testing hypotheses: Xi,...,X,, ~ Bern(p).
> Hy:p<03vs H :p>0.3.
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Example: Power Function

Testing hypotheses: X1, ..., X, ~ Bern(p).
Hy:p<03vs H :p>0.3.
Statistic Y = > X, if R:Y € (npo + ¢,0)

Power function:

vvyyy

m(p|d) = P(Y > npo + c|p)

v

We can compute this since Y ~ Binom(n, p)

» Power function is increasing in p, supremum for p € g for
p=0.3.
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The Likelihood Ratio test

Likelihood Ratio Test
The statistic
M) — S ol 10
supgeq fn(x | 0)
is called the likelihood ratio statistic. A likelihood ratio test of
hypotheses is to reject Hy if A(x) < k for some constant k.

Example
> Xi,...,X, ~ Bern(p)
> Hy:p=0.5vs Hy : p#0.5.

» Find the likelihood ratio statistic and find a test with level
0.05.

4/9



Large Sample Likelihood Ratio Test

Theorem

Let © be an open subset of p-dimensional space, and suppose
that Hy specifies that k& coordinates of 6 are equal to k spe-
cific values. Assume that Hy is true and that the likelihood
function satisfies the conditions needed to prove that the M.L.E.
is asymptotically normal and asymptotically efficient. Then, as
n — 00, —2log A(X) converges in distribution to the x? distribu-
tion with k£ degrees of freedom.
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Uniformly Most Powerful Tests

Hy:0 € Qg vs Hy:0e )y

> A test §* is a uniformly most powerful test at level oy if for
any other level o test §

m(0]6) <7 (0|d*) forall®e

It has the lowest probability of type II error of any test,
uniformly for all § € ;.
> We control the probability of type I error by setting the
level (size) of the test low. We then want to control the
probability of type II error.
» If 7 (6| 6*) is high for all 8 € Qy, the test is often called
"powerful"
» In a large class of problems (the distribution has a
"monotone likelihood ratio") we can find a uniformly most
powerful test for one-sided hypotheses (Ch. 9.3).
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Hypothesis tests vs Confidence Intervals

Rain from Seeded Clouds
> Without seeding: p = 4.
> With seeding: p = 5.136.
> Hy: <4 H;:u>4.
> n=126,0=16.

v

Find a 0.05-level test for Hy.
Find a 95% confidence interval for pu.

v



Hypothesis tests vs Confidence Intervals

Theorem

Suppose that for every value 0y in © there is a test at level a of
the hypothesis Hy : 8 = 3. Denote the rejection region of the
test by R (0p). Then the set

C(X)={0:X ¢ R(0)}

is a 100(1 — a)% confidence interval for 6.

Suppose that C(X) is a 100(1 — «)% confidence interval for 0;
that is, for every 6y,

P[QOEC(X)]GZQO]:l—O&

Then a rejection for a test at level « of the hypothesis Hy : 6 = 6
is

A(0y) ={X [0 ¢ C(X)}
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Hypothesis tests based on the CLT

» Testing hypotheses: Xi,...,X,, ~ Bern(p).
> Hy:p<03vs Hy:p>0.3.
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Hypothesis tests based on the CLT

» Testing hypotheses: Xi,...,X,, ~ Bern(p).
> Hy:p<03vs Hy:p>0.3.
> Statistic Y =Y X;, if R:Y € (npg + ¢, )

» Power function:

(p|0) = P(Y > npo + ¢|p)
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Hypothesis tests based on the CLT

>

>
>
>

Testing hypotheses: Xi,...,X,, ~ Bern(p).
Hy:p<03vs H:p>0.3.
Statistic Y = > X;, if R:Y € (npg + ¢, )

Power function:
(p|0) = P(Y > npo + ¢|p)
For a test with level «y,
suppe,(pl0) = P(Y > npo + clp = po) =
Vn(X, — p) 4 N (0,0?)

If, additionally, 62 2 52,
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Hypothesis tests based on the CLT

» Testing hypotheses: Xi,...,X,, ~ Bern(p).
> Hy:p<03vs Hy:p>0.3.

> Statistic Y =Y X;, if R:Y € (npg + ¢, )
>

Power function:
(p|0) = P(Y > npo + ¢|p)
> For a test with level «y,
suppe,(pl0) = P(Y > npo + clp = po) =
Vn(X, — p) 4 N (0,0?)

» If, additionally, 62 2 52,
» Then

\/ﬁ(yn*ﬂ) d N(0,1)

—
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