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Lecture Summary

8.8 Fisher Information
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Point Estimation Summary

» Bayesian Approach: Treat 6 as an R.V.
» Find the posterior probability of 8: f(0|z1,...,zy).
» Pick the estimator that minimizes some loss function.
» You can compute P(a < 6 <b).
» Frequentist Approach: 6 is an unknown number.
» Find the likelihood function of the data for each value of 6:

flze, ..., x,)0).
> Pick the estimator that maximizes the likelihood of the
data.

» Use the sampling distribution of the estimator to compute
confidence intervals P(A < 0 < B).
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Properties of MLE estimators

Consistency, Asymptotic Normality

Let {f(x | ) : 0 € Q} be a parametric model, where § € R is a

single parameter. Let X1,..., X, g f (x| bp) for 6y € Q, and

let 6 be the M LE based on X1, ... , Xp. Under certain regularity
conditions, 6 is consistent and asymptotically normal, with

i (0= 00) 4 & (07415 )

I(0) is defined by the two equivalent expressions
1(9) := Varg[2(X, 0)] = —Eg [2'(X,0)],
where Vary and [Eg denote variance and expectation with respect
to X ~ f(x ] 0), and
2

0 0
2a,0) = 55log [(20), #'(2,0) = = 1og (x| 0).
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Conditions

» All PDFs/PMFs f(z | #) in the model have the same
support,

» 6 is an interior point (i.e., not on the boundary) of €,
The log-likelihood I(#) is differentiable in 6, and

> 4 is the unique value of 6 € Q that solves the equation
0=10(6).

v
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Fisher Information

z(x,0) is called the score function, and I(#) is called the Fisher
information.

I(0) := Varg[2(X, 0)] = —Eg [2'(X, )] ,

Fisher information provides a way to measure the amount of
information that a random variable contains about some
parameter # of the random variable’s assumed probability
distribution.

» Find the Fisher Information for the mean of the Normal
Distribution with known mean.

» Find the Fisher Information for the parameter od the
Bernoulli distribution.
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Properties of Estimators

Unbiased Estimators
An estimator is unbiased if

A~

Bias(0,0) = E(6) — 0 = 0.

Mean Squared Error of an Estimator
MSE({) = E [(é - 9)2]
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Properties of Estimators

Unbiased Estimators
An estimator is unbiased if

Bias(6,0) = E(6) — 6 = 0.

Mean Squared Error of an Estimator
MSE({) = E [(é - 9)2]
= Var(0 — 0) + (E[6 - 6])°

A~

= Var(f) + Bias?(0, )
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Cramer-Rao Lower Bound

Consider a parametric model {f(z | ) : 0 € Q} (satisfying cer-
tain mild regularity assumptions) where # € R is a single pa-

rameter. Let T be any unbiased estimator of € based on data

X1,..., Xp "X f(2 | 6). Then

Varg[T] > n(0)

Efficient Estimator

An unbiased estimator T is an efficient estimator of its expecta-

tion 6 if Varg[T] = "%0") for every value of § € Q.
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Cramer-Rao Lower Bound

Consider a parametric model {f(z | ) : 0 € Q} (satisfying cer-
tain mild regularity assumptions) where # € R is a single pa-

rameter. Let T be any unbiased estimator of € based on data

X1,..., Xp "X f(2 | 6). Then

Varg[T] >

nl(6)

Efficient Estimator
An unbiased estimator T is an efficient estimator of its expecta-

tion 6 if Varg[T] = "%0") for every value of § € Q.

MLE estimators are asymptotically efficient.
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Properties of the MLE estimators

Invariance
If § is the maximum likelihood estimator of #, then g(é) is the
maximum likelihood estimator of g(6).
The proof is very easy if g is a one-to-one function, more
complicated otherwise.
» Example: Variance of the Bernoulli distribution: p(1 — p).
> Example: Odds for the Bernoulli distribution: 1%.

The delta method
If a function g : R — R is differentiable at 6y with ¢’ (6y) # 0 ,
and if

N (é _ 90) 4 N (0,0 (6p))

for some variance v (6p), then

Vi (90) g (00)) 4 A (0. (o (60))" v (00))
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