Parametric Statistics Fisher Information

Sofia Triantafillou

sof.trianta fillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

December 11, 2023

1/9

Lecture Summary

8.8 Fisher Information

Point Estimation Summary

▶ Bayesian Approach: Treat θ as an R.V.

- Find the posterior probability of θ : $f(\theta|x_1, \ldots, x_n)$.
- ▶ Pick the estimator that minimizes some loss function.
- You can compute $P(a \le \theta \le b)$.

Frequentist Approach: θ is an unknown number.

- Find the likelihood function of the data for each value of θ : $f(x_1, \ldots, x_n | \theta)$.
- Pick the estimator that maximizes the likelihood of the data.
- Use the sampling distribution of the estimator to compute confidence intervals $P(A \le \theta \le B)$.

イロト イボト イヨト イヨト ヨー わらの

Properties of MLE estimators

Consistency, Asymptotic Normality Let $\{f(x \mid \theta) : \theta \in \Omega\}$ be a parametric model, where $\theta \in \mathbb{R}$ is a single parameter. Let $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta_0)$ for $\theta_0 \in \Omega$, and let $\hat{\theta}$ be the *MLE* based on X_1, \ldots, X_n . Under certain regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal, with

$$\sqrt{n}\left(\hat{\theta}- heta_{0}
ight)\overset{d}{
ightarrow}\mathcal{N}\left(0,rac{1}{I\left(heta_{0}
ight)}
ight)$$

 $I(\theta)$ is defined by the two equivalent expressions

$$I(\theta) := \operatorname{Var}_{\theta}[z(X, \theta)] = -\mathbb{E}_{\theta}\left[z'(X, \theta)\right],$$

where $\operatorname{Var}_{\theta}$ and \mathbb{E}_{θ} denote variance and expectation with respect to $X \sim f(x \mid \theta)$, and

$$z(x,\theta) = \frac{\partial}{\partial \theta} \log f(x \mid \theta), \quad z'(x,\theta) = \frac{\partial^2}{\partial \theta^2} \log f(x \mid \theta).$$

Conditions

- ► All PDFs/PMFs $f(x \mid \theta)$ in the model have the same support,
- θ_0 is an interior point (i.e., not on the boundary) of Ω ,
- ▶ The log-likelihood $l(\theta)$ is differentiable in θ , and
- $\hat{\theta}$ is the unique value of $\theta \in \Omega$ that solves the equation $0 = l'(\theta)$.

Fisher Information

 $z(x,\theta)$ is called the score function, and $I(\theta)$ is called the Fisher information.

$$I(\theta) := \operatorname{Var}_{\theta}[z(X, \theta)] = -\mathbb{E}_{\theta}[z'(X, \theta)],$$

Fisher information provides a way to measure the amount of information that a random variable contains about some parameter θ of the random variable's assumed probability distribution.

- ▶ Find the Fisher Information for the mean of the Normal Distribution with known mean.
- ▶ Find the Fisher Information for the parameter od the Bernoulli distribution.

Properties of Estimators

Unbiased Estimators An estimator is unbiased if

$$\operatorname{Bias}(\hat{\theta}, \theta) = E(\hat{\theta}) - \theta = 0.$$

Mean Squared Error of an Estimator $MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right]$

Properties of Estimators

Unbiased Estimators An estimator is unbiased if

$$\operatorname{Bias}(\hat{\theta}, \theta) = E(\hat{\theta}) - \theta = 0.$$

Mean Squared Error of an Estimator

$$MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right]$$

$$= Var(\hat{\theta} - \theta) + (\mathbb{E}[\hat{\theta} - \theta])^2$$

$$= Var(\hat{\theta}) + Bias^2(\hat{\theta}, \theta)$$

(日) (四) (로) (로) (로) (로)

Cramer-Rao Lower Bound

Consider a parametric model $\{f(x \mid \theta) : \theta \in \Omega\}$ (satisfying certain mild regularity assumptions) where $\theta \in \mathbb{R}$ is a single parameter. Let *T* be any unbiased estimator of θ based on data $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$. Then

$$\operatorname{Var}_{\theta}[T] \ge \frac{1}{nI(\theta)}$$

Efficient Estimator

An unbiased estimator T is an efficient estimator of its expectation θ if $\operatorname{Var}_{\theta}[T] = \frac{1}{nI(\theta)}$ for every value of $\theta \in \Omega$.

・ロト ・個ト ・ヨト ・ヨト 三日

Cramer-Rao Lower Bound

Consider a parametric model $\{f(x \mid \theta) : \theta \in \Omega\}$ (satisfying certain mild regularity assumptions) where $\theta \in \mathbb{R}$ is a single parameter. Let *T* be any unbiased estimator of θ based on data $X_1, \ldots, X_n \stackrel{IID}{\sim} f(x \mid \theta)$. Then

$$\operatorname{Var}_{\theta}[T] \ge \frac{1}{nI(\theta)}$$

Efficient Estimator

An unbiased estimator T is an efficient estimator of its expectation θ if $\operatorname{Var}_{\theta}[T] = \frac{1}{nI(\theta)}$ for every value of $\theta \in \Omega$.

MLE estimators are asymptotically efficient.

Properties of the MLE estimators

Invariance

If $\hat{\theta}$ is the maximum likelihood estimator of θ , then $g(\hat{\theta})$ is the maximum likelihood estimator of $g(\theta)$.

The proof is very easy if g is a one-to-one function, more complicated otherwise.

- Example: Variance of the Bernoulli distribution: p(1-p).
- Example: Odds for the Bernoulli distribution: $\frac{p}{1-n}$.

The delta method

If a function $g: \mathbb{R} \to \mathbb{R}$ is differentiable at θ_0 with $g'(\theta_0) \neq 0$, and if

$$\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,v\left(\theta_{0}\right)\right)$$

for some variance $v(\theta_0)$, then

$$\sqrt{n}\left(g(\hat{\theta}) - g\left(\theta_{0}\right)\right) \xrightarrow{d} \mathcal{N}\left(0, \left(g'\left(\theta_{0}\right)\right)^{2} v\left(\theta_{0}\right)\right)$$