Parametric Statistics-Recitation 8 (Solutions)

Instructions for Exercises 1 to 5 : In each of these exercises, assume that the random variables X_{1}, \ldots, X_{n} form a random sample of size n from the distribution specified in that exercise, and show that the statistic T specified in the exercise is a sufficient statistic for the parameter.

Exercise 1.

The Bernoulli distribution with parameter p, which is unknown $(0<p<1) ; T=\sum_{i=1}^{n} X_{i}$.

Solution.

The joint p.d.f is

$$
f(\mathbf{x} \mid p)=p^{T}(1-p)^{n-T}
$$

So the Factorization theorem works for

$$
u(\mathbf{x})=1 \text { and } v(T, p)=p^{T}(1-p)^{n-T}
$$

Exercise 2.

The geometric distribution with parameter p, which is unknown $(0<p<1) ; T=\sum_{i=1}^{n} X_{i}$.

Solution.

The joint p.d.f is

$$
f(\mathbf{x} \mid p)=p^{n}(1-p)^{T}
$$

So the Factorization theorem works for

$$
u(\mathbf{x})=1 \text { and } v(T, p)=p^{n}(1-p)^{T}
$$

Exercise 3.

The normal distribution for which the mean μ is known and the variance $\sigma^{2}>0$ is unknown; $T=$ $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$.

Solution.

The joint p.d.f is

$$
f\left(\mathbf{x} \mid \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{\frac{-T}{2 \sigma^{2}}}
$$

So the Factorization theorem works for

$$
u(\mathbf{x})=1 \text { and } v\left(T, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{\frac{-T}{2 \sigma^{2}}}
$$

Exercise 4.

The gamma distribution with parameters α and β, where the value of α is known and the value of β is unknown $(\beta>0) ; T=\bar{X}_{n}$.

Solution.

The joint p.d.f is

$$
f(\mathbf{x} \mid \beta)=\frac{1}{(\Gamma(a))^{n}}\left[\prod_{i=1}^{n} x_{i}\right]^{a-1} \beta^{n a} e^{-n \beta T}
$$

So the Factorization theorem works for

$$
u(\mathbf{x})=\frac{1}{(\Gamma(\alpha))^{n}}\left[\prod_{i=1}^{n} x_{i}\right]^{\alpha-1} \text { and } v(T, \beta)=\beta^{n \alpha} e^{-n \beta T}
$$

Exercise 5.

The gamma distribution with parameters α and β, where the value of β is known and the value of α is unknown $(\alpha>0) ; T=\prod_{i=1}^{n} X_{i}$.

Solution.

The joint p.d.f is that same as that in Exercise 4. However, since the unknown parameter is now α instead of β, the appropriate factorization is now as follows:

$$
f(\mathbf{x} \mid \alpha)=e^{-\beta \sum_{i=1}^{n} x_{i}} \frac{b^{n \alpha}}{(\Gamma(a))^{n}} T^{\alpha-1}
$$

So the Factorization theorem works for

$$
u(\mathbf{x})=e^{-\beta \sum_{i=1}^{n} x_{i}} \text { and } v(T, \alpha)=\frac{b^{n \alpha}}{(\Gamma(a))^{n}} T^{\alpha-1}
$$

Exercise 6.

Consider a distribution for which the p.d.f. or the p.f. is $f(x \mid \theta)$, where the parameter θ is a k-dimensional vector belonging to some parameter space Ω. It is said that the family of distributions indexed by the values of θ in Ω is a k-parameter exponential family, or a k-parameter Koopman-Darmois family, if $f(x \mid \theta)$ can be written as follows for $\theta \in \Omega$ and all values of x :

$$
f(x \mid \theta)=a(\theta) b(x) \exp \left[\sum_{i=1}^{k} c_{i}(\theta) d_{i}(x)\right] .
$$

Here, a and c_{1}, \ldots, c_{k} are arbitrary functions of θ, and b and d_{1}, \ldots, d_{k} are arbitrary functions of x. Suppose now that X_{1}, \ldots, X_{n} form a random sample from a distribution which belongs to a k-parameter exponential family of this type, and define the k statistics T_{1}, \ldots, T_{k} as follows:

$$
T_{i}=\sum_{j=1}^{n} d_{i}\left(X_{j}\right) \quad \text { for } i=1, \ldots, k
$$

Show that the statistics T_{1}, \ldots, T_{k} are jointly sufficient statistics for θ.

Solution.

The joint p.d.f or p.f is

$$
\prod_{j=1}^{n} b\left(x_{j}\right)[a(\theta)]^{n} \exp \left[\sum_{i=1}^{k} c_{i}(\theta) \sum_{j=1}^{n} d_{i}\left(x_{j}\right)\right]
$$

So it follows from the factorization criterion for

$$
u(\mathbf{x})=\prod_{j=1}^{n} b\left(x_{j}\right) \text { and } v\left(T_{1}, \ldots, T_{k}, \theta\right)=[a(\theta)]^{n} \exp \left[\sum_{i=1}^{k} T_{i} c_{i}(\theta)\right]
$$

Exercise 7.

Show that each of the following families of distributions is a two-parameter exponential family as defined in Exercise 6:
(a) The family of all normal distributions for which both the mean and the variance are unknown
(b) The family of all gamma distributions for which both α and β are unknown
(c) The family of all beta distributions for which both α and β are unknown.

Solution.

In each part we shall present the p.d.f, and then we shall identify the functions $a, b, c_{1}, c_{2}, d_{1}, d_{2}$ in the form for a two-parameter exponential family given in Exercise 6.
(a) Let $\theta=\left(\mu, \sigma^{2}\right)$. Then

$$
f(x \mid \theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Therefore

$$
\begin{gathered}
a(\theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left[-\frac{\mu^{2}}{2 \sigma^{2}}\right] \\
b(x)=1 \\
c_{1}(\theta)=-\frac{1}{2 \sigma^{2}} \\
d_{1}(x)=x^{2} \\
c_{2}(\theta)=\frac{\mu}{\sigma^{2}} \\
d_{2}(x)=x
\end{gathered}
$$

(b) Let $\theta=(\alpha, \beta)$. Then

$$
f(x \mid \theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}
$$

Therefore

$$
\begin{gathered}
a(\theta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \\
b(x)=1 \\
c_{1}(\theta)=\alpha-1 \\
d_{1}(x)=\log x \\
c_{2}(\theta)=-\beta \\
d_{2}(x)=x
\end{gathered}
$$

(c) Let $\theta=(\alpha, \beta)$. Then

$$
f(x \mid \theta)=\frac{1}{B(\alpha, \beta)} x^{a-1}(1-x)^{b-1}
$$

Therefore

$$
\begin{gathered}
a(\theta)=\frac{1}{B(\alpha, \beta)} \\
b(x)=1 \\
c_{1}(\theta)=\alpha-1 \\
d_{1}(x)=\log x \\
c_{2}(\theta)=\beta-1 \\
d_{2}(x)=\log (1-x)
\end{gathered}
$$

