# Parametric Statistics <br> t Distributions, Confidence Intervals 

Sofia Triantafillou<br>sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics
November 27, 2023

## Lecture Summary

8.4 The t Distributions<br>8.5 Confidence Intervals

## Last time

- Let $X_{1}, \ldots, X_{n}$ be a random sample from a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ with unknown $\mu, \sigma^{2}$.
- The sample mean and the sample variance are defined as

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \hat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

- They are the MLEs for $\mu$ and $\sigma^{2}$ in this setting.

Theorem
Let $X_{1}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Then $\bar{X}_{n}$ and $\hat{\sigma}_{0}^{2}$ are independent random variables and $\bar{X}_{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, $\frac{n S_{n}}{\sigma^{2}} \sim \chi_{n-1}^{2}$.

## Example

## Rain from Seeded Clouds

- Simpson, Olsen, and Eden (1975).
- 26 clouds were seeded with silver nitrate to see if they produced more rain than unseeded clouds.
- Unseeded clouds produce mean rainfall of 4 (log scale).
- We are interested in how far the average log-rainfall of the seeded clouds $\hat{\mu}$ is from 4 .



## Example

How probable is it that we have overestimated the variance by more than $25 \%$ ?

$$
P\left(\hat{\sigma}^{2} \leq 0.75 \sigma^{2}\right)=P\left(\frac{26 \hat{\sigma}^{2}}{\sigma^{2}} \leq 0.75 * 26\right)=0.227
$$

What is the smallest number of samples such that

$$
\mathrm{P}\left(|\hat{\mu}-\mu| \leq \frac{1}{5} \sigma, \quad|\hat{\sigma}-\sigma| \leq \frac{1}{5} \sigma\right) \geq \frac{1}{2}
$$

## Example

- $\bar{X}_{n}=5.134, \hat{\sigma}_{0}^{2}=63.96 / 26=2.46$
- Let's say I want to answer $P\left(\left|\bar{X}_{n}-\mu\right|<5\right)$.
- If we know $\sigma^{2}$, use CLT.

$$
Z=\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- If we don't know $\sigma^{2}$ ?


## The $t$ distributions

Let $Y \sim \chi_{m}^{2}$ and $Z \sim \mathcal{N}(0,1)$ be independent. Then the distribution of $X=\frac{Z}{\left(\frac{Y}{m}\right)^{1 / 2}}$ is called the $t$ distribution with $m$ degrees of freedom, or $t_{m}$.

- PDF of the $t$ distribution:

$$
\frac{\Gamma\left(\frac{m+1}{2}\right)}{(m \pi)^{1 / 2} \Gamma\left(\frac{m}{2}\right)}\left(1+\frac{x^{2}}{m}\right)^{-(m+1) / 2},-\infty<x<\infty
$$

- No closed form CDF, tabulated at the end of statistics books


## Relation to the normal distribution



- If $X \sim t_{m}$ then
- Moments of the $t$ Distributions:
- If $m \leq 1, E(X)$ does not exist.
- If $m>1, E(X)=0$.
- If $m>1, E\left(|X|^{k}\right)<\infty$ for $k<m, E\left(|X|^{k}\right)=\infty$ for $k \geq m$.
- If $(m>2)$, then $\operatorname{Var}(X)=m /(m-2)$.
- As $n \rightarrow \infty, t_{n}$ converges in pdf to $\mathcal{N}(0,1)$.


## Relation to samples of a normal distribution

Theorem (8.4.2)
Let $X_{1}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and let $\bar{X}_{n}$ be the sample mean, and define

$$
\sigma^{\prime}=\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}{n-1}\right)^{1 / 2}
$$

Then $\left.n^{1 / 2}\left(\bar{X}_{n}-\mu\right) / \sigma^{\prime}\right)$ follows the $t$ distribution with $n-1$ degrees of freedom.

- Notice that $\sigma^{\prime}$ is not the MLE for $\sigma$, but $\left(\frac{n-1}{n}\right)^{1 / 2} \hat{\sigma}_{0}$
- For large $n, \hat{\sigma}_{0}$ and $\sigma^{\prime}$ are close.


## Review

- Let $X_{1}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- If you know $\mu$ but not $\sigma^{2}$

$$
\frac{n \hat{\sigma}_{M L E}^{2}}{\sigma^{2}} \sim \chi_{n}^{2}, \text { where } \hat{\sigma}_{M L E}^{2} \text { is the MLE for } \sigma^{2}
$$

- If you do not know $\mu$ or $\sigma^{2}$, then

$$
\begin{aligned}
& \frac{n \hat{\sigma}_{0}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}, \text { where } \hat{\sigma}_{0}^{2}=\frac{\sum\left(X_{i}-\bar{X}_{n}\right)^{2}}{n} \text { is the MLE for } \sigma^{2} \\
& n^{1 / 2}\left(\bar{X}_{n}-\mu\right) / \sigma^{\prime} \sim t_{n-1}, \text { where } \sigma^{\prime}=\left(\frac{\sum\left(X_{i}-\bar{X}_{n}\right)^{2}}{n-1}\right)^{1 / 2}
\end{aligned}
$$

## Back to our Example

- $\bar{X}_{n}=5.134, \hat{\sigma}^{\prime}=\sqrt{63.96 / 25}=1.600$
- How confident am I in my $\hat{\mu}$ estimate?
- I know that

$$
U=\frac{n^{1 / 2}\left(\bar{X}_{n}-\mu\right)}{\sigma^{\prime}} \sim t_{n-1}
$$

- I can compute $P(-c<U<c)$.


## Confidence Intervals

- I can compute

$$
P\left(\bar{X}_{n}-\frac{c \sigma^{\prime}}{n^{1 / 2}}<\mu<\bar{X}_{n}+\frac{c \sigma^{\prime}}{n^{1 / 2}}\right)
$$

Definition (Confidence Interval)
Let $X_{1}, \ldots, X_{n}$ be a random sample from $f(x \mid \theta)$, where $\theta$ is unknown. Let $g(\theta)$ be a real-valued function, and let $A$ and $B$ be statistics where $P(A<g(\theta)<B) \geq \gamma \quad \forall \theta$. Then the random interval $(A, B)$ is called a $100 \gamma \%$ confidence interval for $g(\theta)$. If equality holds, the CI is exact.

- Notice: $A, B$ are random variables.
- After a random sample is observed, $A, B$ take specific values $a$ and $b$. The interval $(a, b)$ is then called the observed value of the confidence interval.


## Confidence Intervals: Interpretation

- After observing our sample, we find that $(a, b)$ is our $95 \%$-CI for $\mu$.
- This does not mean that $P(a<\mu<b)=0.95$. In fact, we can not make such statements if we consider $\mu$ to be a number (frequentist view).
- We can think of our interpretation as repeated samples.
- Take a random sample of size $n$ from $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Compute $(a, b)$.
- Repeat many times.
- There is a $95 \%$ chance for the random intervals to include the value of $\mu$.


## Confidence Intervals - the zipper plot



Figure: A sample of one hundred observed $95 \%$ confidence intervals based on samples of size 26 from the normal distribution with mean $\mu=5.1$ and standard deviation $\sigma=1.6$. In this figure, $94 \%$ of the intervals contain the value of $\mu$.

## Confidence Intervals

- More generally we want to find $P\left(c_{1}<U<c_{2}\right)=\gamma$
- Symmetric confidence intervals: Equal probability on both sides: $P\left(U \leq c_{1}\right)=P\left(U \geq c_{2}\right)=\frac{1-\gamma}{2}$
- One-sided confidence interval: All the extra probability is on one side.
- $c_{1}=-\infty$ or $c_{2}=\infty$.


## One-sided Confidence Intervals

## Definition (Lower Confidence Limit)

Let $A$ be a statistic so that

$$
P(A<g(\theta)) \geq \gamma \quad \forall \theta
$$

The random interval $(A, \infty)$ is a one-sided $100 \gamma \%$ confidence interval for $g(\theta)$.
$A$ is a $100 \gamma \%$ lower confidence limit for $g(\theta)$

## Definition (Upper Confidence Limit)

Let $B$ be a statistic so that

$$
P(g(\theta)<B) \geq \gamma \quad \forall \theta
$$

The random interval $(-\infty, B)$ is a one-sided $100 \gamma \%$ confidence interval for $g(\theta)$.
$B$ is a $100 \gamma \%$ upper confidence limit for $g(\theta)$

## Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

$$
\begin{aligned}
& 186,181,176,149,184,190,158,139,175,148 \\
& 152,111,141,153,190,157,131,149,135,132
\end{aligned}
$$

- $\bar{X}_{n}=156.85, \sum_{i=1}^{N}\left(X_{i}-\bar{X}_{n}\right)^{2}=9740.55$
- Find a $90 \%$-CI for $\mu$.
- Find a lower $90 \%$-CI for $\mu$
- Find a $90 \%$-CI for $\sigma^{2}$.
- If we know that $\sigma^{2}=484$, find a $90 \%$-CI for $\mu$

