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Last time

▶ Let X1, . . . , Xn be a random sample from a N (µ, σ2) with
unknown µ, σ2.

▶ The sample mean and the sample variance are defined as

Xn =
1

n

n∑
i=1

Xi, σ̂2
0 =

1

n

n∑
i=1

(Xi −Xn)
2

▶ They are the MLEs for µ and σ2 in this setting.

Theorem
Let X1, . . . , Xn be a random sample from N (µ, σ2). Then X̄n

and σ̂2
0 are independent random variables and X̄n ∼ N (µ, σ

2

n ),
nSn
σ2 ∼ χ2

n−1.
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Example
Rain from Seeded Clouds
▶ Simpson, Olsen, and Eden (1975).
▶ 26 clouds were seeded with silver nitrate to see if they

produced more rain than unseeded clouds.
▶ Unseeded clouds produce mean rainfall of 4 (log scale).
▶ We are interested in how far the average log-rainfall of the

seeded clouds µ̂ is from 4.
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Example

How probable is it that we have overestimated the variance by
more than 25%?

P (σ̂2 ≤ 0.75σ2) = P (
26σ̂2

σ2
≤ 0.75 ∗ 26) = 0.227

What is the smallest number of samples such that

P

(
|µ̂− µ| ≤ 1

5
σ, |σ̂ − σ| ≤ 1

5
σ

)
≥ 1

2
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Example

▶ Xn = 5.134, σ̂2
0 = 63.96/26 = 2.46

▶ Let’s say I want to answer P (|Xn − µ| < 5).
▶ If we know σ2, use CLT.

Z =
√
n
Xn − µ

σ
∼ N (0, 1)

▶ If we don’t know σ2?
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The t distributions

Let Y ∼ χ2
m and Z ∼ N (0, 1) be independent. Then the distri-

bution of X = Z(
Y
m

)1/2 is called the t distribution with m degrees

of freedom, or tm.

▶ PDF of the t distribution:

Γ(m+1
2 )

(mπ)1/2Γ(m2 )
(1 +

x2

m
)−(m+1)/2,−∞ < x < ∞

▶ No closed form CDF, tabulated at the end of statistics
books
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Relation to the normal distribution
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▶ If X ∼ tm then
▶ Moments of the t Distributions:

▶ If m ≤ 1, E(X) does not exist.
▶ If m > 1, E(X) = 0.
▶ If m > 1, E

(
|X|k

)
< ∞ for k < m, E

(
|X|k

)
= ∞ for

k ≥ m.
▶ If (m > 2), then Var(X) = m/(m− 2).

▶ As n → ∞, tn converges in pdf to N (0, 1).
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Relation to samples of a normal distribution

Theorem (8.4.2)
Let X1, . . . , Xn be a random sample from N (µ, σ2) and let Xn be
the sample mean, and define

σ′ =
(∑n

i=1(Xi −Xn)
2

n− 1

)1/2

Then n1/2(Xn−µ)/σ′) follows the t distribution with n−1 degrees
of freedom.

▶ Notice that σ′ is not the MLE for σ, but
(
n−1
n

)1/2
σ̂0

▶ For large n, σ̂0 and σ′ are close.
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Review

▶ Let X1, . . . , Xn be a random sample from N (µ, σ2)

▶ If you know µ but not σ2

nσ̂2
MLE

σ2
∼ χ2

n, where σ̂2
MLE is the MLE for σ2

▶ If you do not know µ or σ2, then

nσ̂2
0

σ2
∼ χ2

n−1, where σ̂2
0 =

∑
(Xi −Xn)

2

n
is the MLE for σ2

n1/2(Xn − µ)/σ′ ∼ tn−1, where σ′ =
(∑(Xi −Xn)

2

n− 1

)1/2
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Back to our Example

▶ Xn = 5.134, σ̂′ =
√
63.96/25 = 1.600

▶ How confident am I in my µ̂ estimate?
▶ I know that

U =
n1/2(Xn − µ)

σ′ ∼ tn−1

▶ I can compute P (−c < U < c).
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Confidence Intervals

▶ I can compute

P (Xn − cσ′

n1/2
< µ < Xn +

cσ′

n1/2
)

Definition (Confidence Interval)
Let X1, . . . , Xn be a random sample from f(x|θ), where θ is un-
known. Let g(θ) be a real-valued function, and let A and B be
statistics where P (A < g(θ) < B) ≥ γ ∀θ. Then the random
interval (A,B) is called a 100γ% confidence interval for g(θ). If
equality holds, the CI is exact.

▶ Notice: A,B are random variables.
▶ After a random sample is observed, A,B take specific

values a and b. The interval (a, b) is then called the
observed value of the confidence interval.
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Confidence Intervals: Interpretation

▶ After observing our sample, we find that (a, b) is our
95%-CI for µ.

▶ This does not mean that P (a < µ < b) = 0.95. In fact, we
can not make such statements if we consider µ to be a
number (frequentist view).

▶ We can think of our interpretation as repeated samples.
▶ Take a random sample of size n from N (µ, σ2).
▶ Compute (a, b).
▶ Repeat many times.
▶ There is a 95% chance for the random intervals to include

the value of µ.
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Confidence Intervals - the zipper plot

Figure: A sample of one hundred observed 95% confidence intervals
based on samples of size 26 from the normal distribution with mean
µ = 5.1 and standard deviation σ = 1.6. In this figure, 94% of the
intervals contain the value of µ.
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Confidence Intervals

▶ More generally we want to find P (c1 < U < c2) = γ

▶ Symmetric confidence intervals: Equal probability on both
sides: P (U ≤ c1) = P (U ≥ c2) =

1−γ
2

▶ One-sided confidence interval: All the extra probability is
on one side.

▶ c1 = −∞ or c2 = ∞.
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One-sided Confidence Intervals

Definition (Lower Confidence Limit)
Let A be a statistic so that

P (A < g(θ)) ≥ γ ∀θ

The random interval (A,∞) is a one-sided 100γ% confidence in-
terval for g(θ).
A is a 100γ% lower confidence limit for g(θ)

Definition (Upper Confidence Limit)
Let B be a statistic so that

P (g(θ) < B) ≥ γ ∀θ

The random interval (−∞, B) is a one-sided 100γ% confidence
interval for g(θ).
B is a 100γ% upper confidence limit for g(θ)
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Example

Data on calorie content in 20 different beef hot dogs from
Consumer Reports (June 1986 issue):

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152, 111, 141, 153, 190, 157, 131, 149, 135, 132

▶ Xn = 156.85,
∑N

i=1(Xi − X̄n)
2 = 9740.55

▶ Find a 90%-CI for µ.
▶ Find a lower 90%-CI for µ

▶ Find a 90%-CI for σ2.
▶ If we know that σ2 = 484, find a 90%-CI for µ
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