Recitation 8

Instructions for Exercises 1 to 5 : In each of these exercises, assume that the random variables X_{1}, \ldots, X_{n} form a random sample of size n from the distribution specified in that exercise, and show that the statistic T specified in the exercise is a sufficient statistic for the parameter.

1. The Bernoulli distribution with parameter p, which is unknown $(0<p<1) ; T=\sum_{i=1}^{n} X_{i}$.
2. The geometric distribution with parameter p, which is unknown $(0<p<1) ; T=\sum_{i=1}^{n} X_{i}$.
3. The normal distribution for which the mean μ is known and the variance $\sigma^{2}>0$ is unknown; $T=$ $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$.
4. The gamma distribution with parameters α and β, where the value of α is known and the value of β is unknown $(\beta>0) ; T=\bar{X}_{n}$.
5. The gamma distribution with parameters α and β, where the value of β is known and the value of α is unknown $(\alpha>0) ; T=\prod_{i=1}^{n} X_{i}$.
6. Consider a distribution for which the p.d.f. or the p.f. is $f(x \mid \theta)$, where the parameter θ is a k dimensional vector belonging to some parameter space Ω. It is said that the family of distributions indexed by the values of θ in Ω is a k-parameter exponential family, or a k-parameter Koopman-Darmois family, if $f(x \mid \theta)$ can be written as follows for $\theta \in \Omega$ and all values of x :

$$
f(x \mid \theta)=a(\theta) b(x) \exp \left[\sum_{i=1}^{k} c_{i}(\theta) d_{i}(x)\right]
$$

Here, a and c_{1}, \ldots, c_{k} are arbitrary functions of θ, and b and d_{1}, \ldots, d_{k} are arbitrary functions of x. Suppose now that X_{1}, \ldots, X_{n} form a random sample from a distribution which belongs to a k-parameter exponential family of this type, and define the k statistics T_{1}, \ldots, T_{k} as follows:

$$
T_{i}=\sum_{j=1}^{n} d_{i}\left(X_{j}\right) \quad \text { for } i=1, \ldots, k
$$

Show that the statistics T_{1}, \ldots, T_{k} are jointly sufficient statistics for θ.
7. Show that each of the following families of distributions is a two-parameter exponential family as defined in Exercise 6: a. The family of all normal distributions for which both the mean and the variance are unknown b . The family of all gamma distributions for which both α and β are unknown c . The family of all beta distributions for which both α and β are unknown

