Parametric Statistics Sampling Distributions of Estimators

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

November 22, 2023

Lecture Summary

- 8.2 The χ^2 -distributions.
- 8.3 Joint Distribution of the Sample Mean and Variance.

MLE for μ, σ^2

Let
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$$
:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • のへの

3/11

Find the MLE for

- ▶ μ when σ^2 is known.
- ▶ σ^2 when μ is known.
- ▶ μ, σ^2 when they are both unknown.

MLE for μ, σ^2

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Find the MLE for

μ when σ² is known. μ̂ = X̄_n
σ² when μ is known. σ² = 1/n Σⁿ_{i=1}(X_i − μ)²
μ, σ² when they are both unknown. μ̂ = X̄_n, σ²₀ = 1/n Σⁿ_{i=1}(X_i − μ̂)²

MLE for μ, σ^2

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 目 = のへぐ

3/11

Find the MLE for

$$\begin{array}{l} \mu \text{ when } \sigma^2 \text{ is known.} \quad \hat{\mu} = \overline{X}_n \\ \bullet \sigma^2 \text{ when } \mu \text{ is known.} \quad \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \\ \bullet \mu, \sigma^2 \text{ when they are both unknown.} \quad \hat{\mu} = \overline{X}_n, \\ \hat{\sigma_0^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2 \\ \hline \end{array}$$

Bias?

The χ^2 distributions

Definition

The χ^2 distribution with *m* degrees of freedom is the $Gamma(a = m/2, \beta = 1/2)$. The pdf is

$$f(x|m) = \frac{1}{2^{m/2}\Gamma(m/2)} x^{m/2-1} e^{-x/2}$$

Properties of the χ^2 distributions

Theorem (8.2.1)

Let X_1, \ldots, X_n be independent random variables and $X_i \sim \chi^2_{m_i}$. Then

$$X_1 + \dots + X_n \sim \chi_m^2$$

where $m = m_1 + \cdots + m_n$.

▶ follows from Theorem 5.7.7. and the MGF:

$$\psi(t) = \left(\frac{1}{1-2t}\right)^{m/2}, \quad t < \frac{1}{2}$$

Theorem (8.2.2) If $X \sim \mathcal{N}(0,1)$, then $X^2 \sim \chi_1^2$

5 / 11

イロト イボト イヨト イヨト 三日

Properties of the χ^2 distributions

Corollary (8.2.1)

If the random variables X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{N}(0, 1)$ then

$$X_1^2 + \dots + X_n^2 \sim \chi_n^2$$

The χ_m^2 distribution is a sampling distribution related to the sample variance of a normal distribution:

• If X_1, \ldots, X_n are i.i.d, $X_i \sim \mathcal{N}(\mu, \sigma^2)$, where μ is known and the MLE of σ^2 is

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

► Then

$$\frac{n\hat{\sigma}_{MLE}^2}{\sigma^2}\sim \chi_n^2$$

6 / 11

Sampling Distributions of the normal sample mean and variance

- Let X_1, \ldots, X_n be a random sample from a $\mathcal{N}(\mu, \sigma^2)$ with unknown μ, σ^2 .
- ▶ The sample mean and the sample variance are defined as

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

▶ They are the MLEs for μ and σ^2 in this setting.

Theorem (8.3.1)

Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$. Then \overline{X}_n and S_n are independent random variables and $\overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, $\frac{nS_n}{\sigma^2} \sim \chi^2_{n-1}$.

Sampling Distribution of the Normal sample mean and variance

Theorem (8.3.1)

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Then \overline{X}_n and S_n are independent random variables and

$$\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n),$$

$$\frac{n}{\sigma^2}S_n = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X}_n)^2 \sim \chi_{n-1}^2$$

- Replacing μ by \overline{X}_n results in one less degree of freedom.
- ▶ \overline{X}_n and S_n are functions of the same random variables, but they are independent (this only happens when the random sample is drawn from a normal distribution).

Example

Rain from Seeded Clouds

- ▶ Simpson, Olsen, and Eden (1975).
- ▶ 26 clouds were seeded with silver nitrate to see if they produced more rain than unseeded clouds.
- ▶ Unseeded clouds produce mean rainfall of 4 (log scale).
- We are interested in how far the average log-rainfall of the seeded clouds $\hat{\mu}$ is from 4.

Example

How probable is it that we have overestimated the variance by more than 25%?

$$P(\hat{\sigma}^2 \le 0.75\sigma^2) = P(\frac{26\hat{\sigma}^2}{\sigma^2} \le 0.75*26) = 0.227$$

What is the smallest number of samples such that

$$\mathbf{P}\left(\left|\hat{\mu}-\mu\right| \leq \frac{1}{5}\sigma \quad , \quad \left|\hat{\sigma}-\sigma\right| \leq \frac{1}{5}\sigma\right) \geq \frac{1}{2}$$

10 / 11

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Recap

- ▶ Today we discussed samples of normal distributions:
- MLE estimators of μ and σ^2 in different settings.
- ▶ Sampling distributions of these estimators.
- Sample mean and sample variance are independent!