### Parametric Statistics

#### Sofia Triantafillou

#### sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

November 20, 2023

< □ > < □ > < □ > < Ξ > < Ξ > Ξ
< ○ Q <>
1/14

# Lecture Summary

- 7.7 Sufficient Statistics
- 7.8 Jointly Sufficient Statistics
- 8.1 Sampling Distributions

# Recap: Estimators

- Let X<sub>1</sub>,..., X<sub>n</sub> be a random sample from Expo(λ). (e.g., the lifetimes of electronic components).
- Find  $\hat{\lambda}_{MLE}$ .
- Assuming a Gamma(1, 1) prior for  $\lambda$ , find the posterior for  $\lambda$ .
- Is the MLE unbiased?
- ► Is the Bayes Estimator for the squared error loss unbiased?
- Can we improve the estimation?

## Sufficient Statistics

- Both estimators use the statistic  $T = \sum_i X_i$ .
- Can we do better if we use something else?

#### Sufficient Statistic

- Let X<sub>1</sub>,..., X<sub>n</sub> be a random sample from a distribution indexed by a parameter θ, and T be a statistic.
- Suppose that, for each t, the conditional distribution of X<sub>1</sub>,..., X<sub>n</sub> given T = t and θ is the same for all θ.
- Then we say that *T* is a sufficient statistic for the parameter *θ*.

## Sufficient Statistics: Factorization Theorem

- Let X<sub>1</sub>,..., X<sub>n</sub> form a random sample from either a continuous distribution or a discrete distribution for which the p.d.f. or the p.f. is f(x | θ), where the value of θ is unknown and belongs to a given parameter space Ω.
- A statistic T = r (X<sub>1</sub>,..., X<sub>n</sub>) is a sufficient statistic for θ if and only if the joint p.d.f. or the joint p.f. f<sub>n</sub>(x | θ) of X<sub>1</sub>,..., X<sub>n</sub> can be factored as follows for all values of x = (x<sub>1</sub>,..., x<sub>n</sub>) ∈ R<sup>n</sup> and all values of θ ∈ Ω :

$$f_n(\mathbf{x} \mid \theta) = u(\mathbf{x})v[r(\mathbf{x}), \theta].$$

*u*, *v* are nonnegative, the function *u* may depend on *x* but does not depend on  $\theta$ , and the function *v* will depend on  $\theta$  but depends on the observed value *x* only through the value of the statistic r(x).

## Jointly Sufficient Statistics.

Suppose that for each  $\theta$  and each possible value  $(t_1, \ldots, t_k)$  of  $(T_1, \ldots, T_k)$ , the conditional joint distribution of  $(X_1, \ldots, X_n)$  given  $(T_1, \ldots, T_k) = (t_1, \ldots, t_k)$  does not depend on  $\theta$ . Then  $T_1, \ldots, T_k$  are called **jointly sufficient statistics** for  $\theta$ .

### Factorization Criterion for Jointly Sufficient Statistics.

Let  $r_1, \ldots, r_k$  be functions of *n* real variables. The statistics  $T_i = r_i(\mathbf{X}), i = 1, \ldots, k$ , are jointly sufficient statistics for  $\theta$  if and only if the joint p.d.f. or the joint p.f.  $f_n(x \mid \theta)$  can be factored as follows for all values of  $x \in \mathbf{R}^n$  and all values of  $\theta \in \Omega$ :

$$f_n(\mathbf{x} \mid \theta) = u(\mathbf{x})v[r_1(\mathbf{x}), \ldots, r_k(\mathbf{x}), \theta].$$

*u*, *v* are nonnegative, the function *u* may depend on *x* but does not depend on  $\theta$ , and the function *v* will depend on  $\theta$  but depends on *x* only through the *k* functions  $r_1(\mathbf{x}), \ldots, r_k(\mathbf{x})$ .

### **Order Statistics**

Suppose that  $X_1, \ldots, X_n$  form a random sample from some distribution. Let  $Y_1$  denote the smallest value in the random sample, let  $Y_2$  denote the next smallest value, let  $Y_3$  denote the third smallest value, and so on. In this way,  $Y_n$  denotes the largest value in the sample, and  $Y_{n-1}$  denotes the next largest value. The random variables  $Y_1, \ldots, Y_n$  are called the order statistics of the sample.

### Order Statistics Are Sufficient in Random Samples.

Let  $X_1, \ldots, X_n$  form a random sample from a distribution for which the p.d.f. or the p.f. is  $f(x \mid \theta)$ . Then the order statistics  $Y_1, \ldots, Y_n$  are jointly sufficient for  $\theta$ .

イロン 不良 とうほう 不良 とうせい

## Minimal Sufficient Statistic

- A statistic T is a minimal sufficient statistic if T is sufficient and is a function of every other sufficient statistic.
- Let  $T = r(\mathbf{X})$  be a sufficient statistic for  $\theta$ .
- The M.L.E. θ̂ of θ depends on the observations X<sub>1</sub>,..., X<sub>n</sub> only through the statistic T. Furthermore, if θ̂ is itself sufficient, then it is minimal sufficient.
- Every Bayes estimator  $\hat{\theta}$  of  $\theta$  depends on the observations  $X_1, \ldots, X_n$  only through the statistic T. Furthermore, if  $\hat{\theta}$  is itself sufficient, then it is minimal sufficient.

# Sampling Distribution

- $\hat{\lambda}_{MLE}$  is a function of  $X_1, \ldots, X_n$ .
- lt has a sampling distribution that depends on the value of  $\lambda$ .
- Suppose that the random variables X = (X<sub>1</sub>,...,X<sub>n</sub>) form a random sample from a distribution involving a parameter θ whose value is unknown.
- Let T be a function of X and possibly  $\theta$ . That is,  $T = r(X_1, \dots, X_n, \theta).$
- The distribution of T (given  $\theta$ ) is called the sampling distribution of T.
- We will use the notation E<sub>θ</sub>(T) to denote the mean of T calculated from its sampling distribution.

## Sampling Distribution

- Assume that you have a urn with three numbers: 1,2,3.
- You draw two numbers (with replacement).
- Statistic 1  $(S_1)$ : Mean of the two samples.
- Statistic 2 (S<sub>2</sub>): Maximum of two samples.
- Compute the sampling distributions of  $S_1, S_2$ .

$$x_1, x_2 \mid s_1(x_1, x_2) \mid s_2(x_1, x_2)$$

## Sampling Distribution

| $x_1, x_2$ | $s_1(x_1, x_2)$ | $s_2(x_1,x_2)$ |
|------------|-----------------|----------------|
| 1,1        | 1               | 1              |
| 1,2        | 1.5             | 2              |
| 1,3        | 2               | 3              |
| 2,1        | 1.5             | 2              |
| 2,2        | 2               | 2              |
| 2,3        | 2.5             | 3              |
| 3,1        | 2               | 3              |
| 3,2        | 2.5             | 3              |
| 3,3        | 3               | 3              |

## Why do we care about the sampling distribution.

- Assume that you want to estimate how probable it is that you will make a mistake of more than 0.1..
- You want to estimate  $P(|\hat{\lambda}_{MLE} \lambda|\lambda)$
- For every possible λ, you can compute P(|λ̂<sub>MLE</sub> − λ|λ) based on the sampling distribution of ∑<sup>n</sup><sub>i=1</sub> X<sub>i</sub>.
- Let's say n = 3

### Why do we care about the sampling distribution.

- Assume that you want to estimate how probable it is that you will make a mistake of more than 0.1..
- You want to estimate  $P(|\hat{\lambda}_{MLE} \lambda|\lambda)$
- For every possible λ, you can compute P(|λ̂<sub>MLE</sub> − λ|λ) based on the sampling distribution of ∑<sup>n</sup><sub>i=1</sub> X<sub>i</sub>.
- Let's say n = 3



# Recap

- A statistic is sufficient if no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter.
- Factorization theorem helps us find sufficient statistics.
- A sufficient statistic is minimal sufficient if it can be represented as a function of any other sufficient statistic.
- If MLE estimator is sufficient, it is minimal sufficient.
- ▶ If a Bayes estimator is sufficient, it is minimal sufficient.
- Estimators have their own distributions, known as the sampling distribution.
- We will talk more about specific sampling distributions in the next lectures, particularly for estimators of the Normal Distribution.

# MLE for $\mu, \sigma^2$

Let  $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ , both unknown. Find the MLE for  $\mu, \sigma^2$ .

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$