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Recap: Estimators

▶ Let X1, . . . ,Xn be a random sample from Expo(λ). (e.g., the
lifetimes of electronic components).

▶ Find λ̂MLE .
▶ Assuming a Gamma(1, 1) prior for λ, find the posterior for λ.
▶ Is the MLE unbiased?
▶ Is the Bayes Estimator for the squared error loss unbiased?
▶ Can we improve the estimation?
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Sufficient Statistics

▶ Both estimators use the statistic T =
∑

i Xi .
▶ Can we do better if we use something else?

Sufficient Statistic
▶ Let X1, . . . ,Xn be a random sample from a distribution

indexed by a parameter θ, and T be a statistic.
▶ Suppose that, for each t, the conditional distribution of

X1, . . . ,Xn given T = t and θ is the same for all θ.
▶ Then we say that T is a sufficient statistic for the parameter

θ.
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Sufficient Statistics: Factorization Theorem

▶ Let X1, . . . ,Xn form a random sample from either a
continuous distribution or a discrete distribution for which the
p.d.f. or the p.f. is f (x | θ), where the value of θ is unknown
and belongs to a given parameter space Ω.

▶ A statistic T = r (X1, . . . ,Xn) is a sufficient statistic for θ if
and only if the joint p.d.f. or the joint p.f. fn(x | θ) of
X1, . . . ,Xn can be factored as follows for all values of
x = (x1, . . . , xn) ∈ Rn and all values of θ ∈ Ω :

fn(x | θ) = u(x)v [r(x), θ].

u, v are nonnegative, the function u may depend on x but does not
depend on θ, and the function v will depend on θ but depends on
the observed value x only through the value of the statistic r(x).
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Jointly Sufficient Statistics.

Suppose that for each θ and each possible value (t1, . . . , tk) of
(T1, . . . ,Tk), the conditional joint distribution of (X1, . . . ,Xn) given
(T1, . . . ,Tk) = (t1, . . . , tk) does not depend on θ. Then T1, . . . ,Tk

are called jointly sufficient statistics for θ.

Factorization Criterion for Jointly Sufficient Statistics.
Let r1, . . . , rk be functions of n real variables. The statistics Ti =
ri (X ), i = 1, . . . , k , are jointly sufficient statistics for θ if and only if
the joint p.d.f. or the joint p.f. fn(x | θ) can be factored as follows
for all values of x ∈ Rn and all values of θ ∈ Ω :

fn(x | θ) = u(x)v [r1(x), . . . , rk(x), θ] .

u, v are nonnegative, the function u may depend on x but does not
depend on θ, and the function v will depend on θ but depends on x
only through the k functions r1(x), . . . , rk(x).
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Order Statistics

Suppose that X1, . . . ,Xn form a random sample from some distri-
bution. Let Y1 denote the smallest value in the random sample, let
Y2 denote the next smallest value, let Y3 denote the third smallest
value, and so on. In this way, Yn denotes the largest value in the
sample, and Yn−1 denotes the next largest value. The random vari-
ables Y1, . . . ,Yn are called the order statistics of the sample.

Order Statistics Are Sufficient in Random Samples.
Let X1, . . . ,Xn form a random sample from a distribution for which
the p.d.f. or the p.f. is f (x | θ). Then the order statistics Y1, . . . ,Yn

are jointly sufficient for θ.
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Minimal Sufficient Statistic

▶ A statistic T is a minimal sufficient statistic if T is sufficient
and is a function of every other sufficient statistic.

▶ Let T = r(X ) be a sufficient statistic for θ.
▶ The M.L.E. θ̂ of θ depends on the observations X1, . . . ,Xn

only through the statistic T . Furthermore, if θ̂ is itself
sufficient, then it is minimal sufficient.

▶ Every Bayes estimator θ̂ of θ depends on the observations
X1, . . . ,Xn only through the statistic T . Furthermore, if θ̂ is
itself sufficient, then it is minimal sufficient.
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Sampling Distribution

▶ λ̂MLE is a function of X1, . . . ,Xn.
▶ It has a sampling distribution that depends on the value of λ.
▶ Suppose that the random variables X = (X1, . . . ,Xn) form a

random sample from a distribution involving a parameter θ
whose value is unknown.

▶ Let T be a function of X and possibly θ. That is,
T = r (X1, . . . ,Xn, θ).

▶ The distribution of T (given θ ) is called the sampling
distribution of T .

▶ We will use the notation Eθ(T ) to denote the mean of T
calculated from its sampling distribution.
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Sampling Distribution

▶ Assume that you have a urn with three numbers: 1,2,3.
▶ You draw two numbers (with replacement).
▶ Statistic 1 (S1): Mean of the two samples.
▶ Statistic 2 (S2): Maximum of two samples.
▶ Compute the sampling distributions of S1,S2.

x1, x2 s1 (x1, x2) s2 (x1, x2)
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Sampling Distribution

x1, x2 s1 (x1, x2) s2 (x1, x2)

1,1 1 1
1,2 1.5 2
1,3 2 3
2,1 1.5 2
2,2 2 2
2,3 2.5 3
3,1 2 3
3,2 2.5 3
3,3 3 3
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Why do we care about the sampling distribution.
▶ Assume that you want to estimate how probable it is that you

will make a mistake of more than 0.1..
▶ You want to estimate P(|λ̂MLE − λ|λ)
▶ For every possible λ, you can compute P(|λ̂MLE − λ|λ) based

on the sampling distribution of
∑n

i=1 Xi .
▶ Let’s say n = 3
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Recap

▶ A statistic is sufficient if no other statistic that can be
calculated from the same sample provides any additional
information as to the value of the parameter.

▶ Factorization theorem helps us find sufficient statistics.
▶ A sufficient statistic is minimal sufficient if it can be

represented as a function of any other sufficient statistic.
▶ If MLE estimator is sufficient, it is minimal sufficient.
▶ If a Bayes estimator is sufficient, it is minimal sufficient.
▶ Estimators have their own distributions, known as the

sampling distribution.
▶ We will talk more about specific sampling distributions in the

next lectures, particularly for estimators of the Normal
Distribution.
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MLE for µ, σ2

Let X1, . . . ,Xn ∼ N(µ, σ2), both unknown.
Find the MLE for µ, σ2.

f (x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2
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