# Parametric Statistics 

Sofia Triantafillou<br>sof.triantafillou@gmail.com<br>University of Crete<br>Department of Mathematics and Applied Mathematics

November 20, 2023

## Lecture Summary

7.7 Sufficient Statistics
7.8 Jointly Sufficient Statistics
8.1 Sampling Distributions

## Recap: Estimators

- Let $X_{1}, \ldots, X_{n}$ be a random sample from $\operatorname{Expo}(\lambda)$. (e.g., the lifetimes of electronic components).
- Find $\hat{\lambda}_{M L E}$.
- Assuming a $\operatorname{Gamma}(1,1)$ prior for $\lambda$, find the posterior for $\lambda$.
- Is the MLE unbiased?
- Is the Bayes Estimator for the squared error loss unbiased?
- Can we improve the estimation?


## Sufficient Statistics

- Both estimators use the statistic $T=\sum_{i} X_{i}$.
- Can we do better if we use something else?


## Sufficient Statistic

- Let $X_{1}, \ldots, X_{n}$ be a random sample from a distribution indexed by a parameter $\theta$, and $T$ be a statistic.
- Suppose that, for each $t$, the conditional distribution of $X_{1}, \ldots, X_{n}$ given $T=t$ and $\theta$ is the same for all $\theta$.
- Then we say that $T$ is a sufficient statistic for the parameter $\theta$.


## Sufficient Statistics: Factorization Theorem

- Let $X_{1}, \ldots, X_{n}$ form a random sample from either a continuous distribution or a discrete distribution for which the p.d.f. or the p.f. is $f(x \mid \theta)$, where the value of $\theta$ is unknown and belongs to a given parameter space $\Omega$.
- A statistic $T=r\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for $\theta$ if and only if the joint p.d.f. or the joint p.f. $f_{n}(x \mid \theta)$ of $X_{1}, \ldots, X_{n}$ can be factored as follows for all values of $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ and all values of $\theta \in \Omega$ :

$$
f_{n}(\boldsymbol{x} \mid \theta)=u(\boldsymbol{x}) v[r(\boldsymbol{x}), \theta]
$$

$u, v$ are nonnegative, the function $u$ may depend on $x$ but does not depend on $\theta$, and the function $v$ will depend on $\theta$ but depends on the observed value $\boldsymbol{x}$ only through the value of the statistic $r(x)$.

## Jointly Sufficient Statistics.

Suppose that for each $\theta$ and each possible value $\left(t_{1}, \ldots, t_{k}\right)$ of ( $T_{1}, \ldots, T_{k}$ ), the conditional joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$ given $\left(T_{1}, \ldots, T_{k}\right)=\left(t_{1}, \ldots, t_{k}\right)$ does not depend on $\theta$. Then $T_{1}, \ldots, T_{k}$ are called jointly sufficient statistics for $\theta$.

Factorization Criterion for Jointly Sufficient Statistics.
Let $r_{1}, \ldots, r_{k}$ be functions of $n$ real variables. The statistics $T_{i}=$ $r_{i}(\boldsymbol{X}), i=1, \ldots, k$, are jointly sufficient statistics for $\theta$ if and only if the joint p.d.f. or the joint p.f. $f_{n}(x \mid \theta)$ can be factored as follows for all values of $x \in \boldsymbol{R}^{n}$ and all values of $\theta \in \Omega$ :

$$
f_{n}(\boldsymbol{x} \mid \theta)=u(\boldsymbol{x}) v\left[r_{1}(\boldsymbol{x}), \ldots, r_{k}(\boldsymbol{x}), \theta\right]
$$

$u, v$ are nonnegative, the function $u$ may depend on $x$ but does not depend on $\theta$, and the function $v$ will depend on $\theta$ but depends on $x$ only through the $k$ functions $r_{1}(\boldsymbol{x}), \ldots, r_{k}(\boldsymbol{x})$.

## Order Statistics

Suppose that $X_{1}, \ldots, X_{n}$ form a random sample from some distribution. Let $Y_{1}$ denote the smallest value in the random sample, let $Y_{2}$ denote the next smallest value, let $Y_{3}$ denote the third smallest value, and so on. In this way, $Y_{n}$ denotes the largest value in the sample, and $Y_{n-1}$ denotes the next largest value. The random variables $Y_{1}, \ldots, Y_{n}$ are called the order statistics of the sample.

Order Statistics Are Sufficient in Random Samples.
Let $X_{1}, \ldots, X_{n}$ form a random sample from a distribution for which the p.d.f. or the p.f. is $f(x \mid \theta)$. Then the order statistics $Y_{1}, \ldots, Y_{n}$ are jointly sufficient for $\theta$.

## Minimal Sufficient Statistic

- A statistic $T$ is a minimal sufficient statistic if $T$ is sufficient and is a function of every other sufficient statistic.
- Let $T=r(\boldsymbol{X})$ be a sufficient statistic for $\theta$.
- The M.L.E. $\hat{\theta}$ of $\theta$ depends on the observations $X_{1}, \ldots, X_{n}$ only through the statistic $T$. Furthermore, if $\hat{\theta}$ is itself sufficient, then it is minimal sufficient.
- Every Bayes estimator $\hat{\theta}$ of $\theta$ depends on the observations $X_{1}, \ldots, X_{n}$ only through the statistic $T$. Furthermore, if $\hat{\theta}$ is itself sufficient, then it is minimal sufficient.


## Sampling Distribution

- $\hat{\lambda}_{M L E}$ is a function of $X_{1}, \ldots, X_{n}$.
- It has a sampling distribution that depends on the value of $\lambda$.
- Suppose that the random variables $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ form a random sample from a distribution involving a parameter $\theta$ whose value is unknown.
- Let $T$ be a function of $\boldsymbol{X}$ and possibly $\theta$. That is, $T=r\left(X_{1}, \ldots, X_{n}, \theta\right)$.
- The distribution of $T$ (given $\theta$ ) is called the sampling distribution of $T$.
- We will use the notation $E_{\theta}(T)$ to denote the mean of $T$ calculated from its sampling distribution.


## Sampling Distribution

- Assume that you have a urn with three numbers: 1,2,3.
- You draw two numbers (with replacement).
- Statistic $1\left(S_{1}\right)$ : Mean of the two samples.
- Statistic $2\left(S_{2}\right)$ : Maximum of two samples.
- Compute the sampling distributions of $S_{1}, S_{2}$.

$$
\begin{array}{l|l|l}
x_{1}, x_{2} & s_{1}\left(x_{1}, x_{2}\right) & s_{2}\left(x_{1}, x_{2}\right) \\
\hline
\end{array}
$$

## Sampling Distribution

| $x_{1}, x_{2}$ | $s_{1}\left(x_{1}, x_{2}\right)$ | $s_{2}\left(x_{1}, x_{2}\right)$ |
| :---: | :---: | :---: |
| 1,1 | 1 | 1 |
| 1,2 | 1.5 | 2 |
| 1,3 | 2 | 3 |
| 2,1 | 1.5 | 2 |
| 2,2 | 2 | 2 |
| 2,3 | 2.5 | 3 |
| 3,1 | 2 | 3 |
| 3,2 | 2.5 | 3 |
| 3,3 | 3 | 3 |

## Why do we care about the sampling distribution.

- Assume that you want to estimate how probable it is that you will make a mistake of more than 0.1 .
- You want to estimate $P\left(\left|\hat{\lambda}_{M L E}-\lambda\right| \lambda\right)$
- For every possible $\lambda$, you can compute $P\left(\left|\hat{\lambda}_{M L E}-\lambda\right| \lambda\right)$ based on the sampling distribution of $\sum_{i=1}^{n} X_{i}$.
- Let's say $n=3$


## Why do we care about the sampling distribution.

- Assume that you want to estimate how probable it is that you will make a mistake of more than 0.1 .
- You want to estimate $P\left(\left|\hat{\lambda}_{M L E}-\lambda\right| \lambda\right)$
- For every possible $\lambda$, you can compute $P\left(\left|\hat{\lambda}_{M L E}-\lambda\right| \lambda\right)$ based on the sampling distribution of $\sum_{i=1}^{n} X_{i}$.
- Let's say $n=3$



## Recap

- A statistic is sufficient if no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter.
- Factorization theorem helps us find sufficient statistics.
- A sufficient statistic is minimal sufficient if it can be represented as a function of any other sufficient statistic.
- If MLE estimator is sufficient, it is minimal sufficient.
- If a Bayes estimator is sufficient, it is minimal sufficient.
- Estimators have their own distributions, known as the sampling distribution.
- We will talk more about specific sampling distributions in the next lectures, particularly for estimators of the Normal Distribution.

MLE for $\mu, \sigma^{2}$

Let $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, both unknown.
Find the MLE for $\mu, \sigma^{2}$.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

