Parametric Statistics-Recitation 5 (Solutions)

Exercise 1.

Suppose that X is a random variable for which

$$
\operatorname{Pr}(X \geq 0)=1 \text { and } \operatorname{Pr}(X \geq 10)=1 / 5
$$

Prove that $E(X) \geq 2$.

Solution

Since $\operatorname{Pr}(X \geq 0)=1$ we can use the Markov inequality and so

$$
E(X) \geq 10 \operatorname{Pr}(X \geq 10)=2
$$

Exercise 2.

Suppose that X_{1}, \ldots, X_{n} form a random sample of size n from a distribution for which the mean is 6.5 and the variance is 4 . Determine how large the value of n must be in order for the following relation to be satisfied:

$$
\operatorname{Pr}\left(6 \leq \bar{X}_{n} \leq 7\right) \geq 0.8
$$

Solution

Since $\mu=6.5$ by Chebyshev inequality we have that

$$
\operatorname{Pr}\left(6 \leq \bar{X}_{n} \leq 7\right)=\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \leq \frac{1}{2}\right) \geq 1-4 \sigma^{2}\left(\bar{X}_{n}\right)=1-\frac{16}{n}
$$

Therefore we must have $1-\frac{16}{n} \geq 0.8$ or $n \geq 80$.

Exercise 3.

Suppose that 30 percent of the items in a large manufactured lot are of poor quality. Suppose also that a random sample of n items is to be taken from the lot, and let Q_{n} denote the proportion of the items in the sample that are of poor quality. Find a value of n such that $\operatorname{Pr}\left(0.2 \leq Q_{n} \leq 0.4\right) \geq 0.75$ by using (a) the Chebyshev inequality and (b) the tables of the binomial distribution at the end of this book.

Solution

(a) Here $E\left(Q_{n}\right)=0.3$ and $\operatorname{Var}\left(Q_{n}\right)=\frac{0.3 \cdot 0.7}{n}=\frac{0.21}{n}$. Therefore,

$$
\operatorname{Pr}\left(0.2 \leq Q_{n} \leq 0.4\right)=\operatorname{Pr}\left(\left|Q_{n}-E\left(Q_{n}\right)\right| \leq 0.1\right) \geq 1-\frac{0.21}{n \cdot 0.01}=1-\frac{21}{n}
$$

and it must be $1-\frac{21}{n} \geq 0.75$ or $n \geq 84$.
(b) Let X_{n} denote the total number of items in the sample that are of poor quality. Then $X_{n}=n Q_{n}$ and

$$
\operatorname{Pr}\left(0.2 \leq Q_{n} \leq 0.4\right)=\operatorname{Pr}\left(0.2 n \leq X_{n} \leq 0.4 n\right)
$$

Since X_{n} has a binomial distribution with parameters n and $p=0.3$, the value of this probability can be determined for various values of n from the table of the binomial distribution. For $n=15$ we found that

$$
\operatorname{Pr}\left(0.2 n \leq X_{n} \leq 0.4 n\right)=\operatorname{Pr}\left(3 \leq X_{n} \leq 6\right)=0.7419
$$

and for $n=20$

$$
\operatorname{Pr}\left(0.2 n \leq X_{n} \leq 0.4 n\right)=\operatorname{Pr}\left(4 \leq X_{n} \leq 8\right)=0.7796
$$

Since this probability must be at least 0.75 we can take $n \geq 20$.

Exercise 4.

It is said that a sequence of random variables Z_{1}, Z_{2}, \ldots converges to a constant b in quadratic mean if

$$
\lim _{n \rightarrow \infty} E\left[\left(Z_{n}-b\right)^{2}\right]=0
$$

Show that this is satisfied if and only if

$$
\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=b \text { and } \lim _{n \rightarrow \infty} \operatorname{Var}\left(Z_{n}\right)=0 .
$$

Hint: Use Exercise 5 of Sec. 4.3 in the DeGroot and Schervish book.

Solution

Exercise 5 of Sec. 4.3 says that $E\left[\left(Z_{n}-b\right)^{2}\right]=\left[E\left(Z_{n}\right)-b\right]^{2}+\operatorname{Var}\left(Z_{n}\right)$. The proof is simple:

$$
E\left[\left(Z_{n}-b\right)^{2}\right]=E\left[Z_{n}^{2}-2 Z_{n} b+b^{2}\right]=E\left(Z_{n}^{2}\right)-2 b E\left(Z_{n}\right)+b^{2}=\operatorname{Var}\left(Z_{n}\right)+\left[E\left(Z_{n}\right)\right]^{2}-2 b E\left(Z_{n}\right)+b^{2}=\left[E\left(Z_{n}\right)-b\right]^{2}+\operatorname{Var}\left(Z_{n}\right)
$$

Therefore $\lim _{n \rightarrow \infty} E\left[\left(Z_{n}-b\right)^{2}\right]=0$ if and only if $\lim _{n \rightarrow \infty}\left[E\left(Z_{n}-b\right)\right]^{2}=0$ and $\lim _{n \rightarrow \infty} \operatorname{Var}\left(Z_{n}\right)=0$. That is

$$
\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=b \text { and } \lim _{n \rightarrow \infty} \operatorname{Var}\left(Z_{n}\right)=0 .
$$

Exercise 5.

Suppose that the distribution of the number of defects on any given bolt of cloth is the Poisson distribution with mean 5 , and the number of defects on each bolt is counted for a random sample of 125 bolts. Determine the probability that the average number of defects per bolt in the sample will be less than 5.5 .

Solution

Since the variance of a Poisson distribution is equal to the mean, the number of defects on any bolt has mean 5 and variance 5 . Therefore, the distribution of the average number \bar{X}_{n} on the 125 bolts will be approximately the normal distribution with mean 5 and variance $\frac{5}{125}=\frac{1}{25}$. If we let

$$
Z=\frac{\bar{X}_{n}-5}{\frac{1}{5}}=5\left(\bar{X}_{n}-5\right)
$$

then $Z \sim N(0,1)$. Therefore

$$
\operatorname{Pr}\left(\bar{X}_{n}<5.5\right)=\operatorname{Pr}(Z<2.5) \approx 0.9938
$$

Exercise 6.

A random sample of n items is to be taken from a distribution with mean μ and standard deviation σ.
(a) Use the Chebyshev inequality to determine the smallest number of items n that must be taken in order to satisfy the following relation:

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \leq \frac{\sigma}{4}\right) \geq 0.99 .
$$

(b) Use the central limit theorem to determine the smallest number of items n that must be taken in order to satisfy the relation in part (a) approximately.

Solution

(a) From Chebyshev inequality we have that

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\frac{\sigma}{4}\right) \leq \frac{\sigma^{2}}{n} \cdot\left(\frac{4}{\sigma}\right)^{2}=\frac{16}{n}
$$

Therefore

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \leq \frac{\sigma}{4}\right) \geq 1-\frac{16}{n}
$$

So we want $1-\frac{16}{n} \geq 0.99$ or $n \geq 1600$.
(b) We have that

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right| \leq \frac{\sigma}{4}\right)=\operatorname{Pr}\left(|Z| \leq \frac{\sqrt{n}}{4}\right) \geq 0.99
$$

where $Z \sim N(0,1)$. So from the table of standard normal distribution we found that $\frac{\sqrt{n}}{4} \geq 2.567$ or $n \geq 105.4$. Therefore, the smallest possible sample size is 106 .

Exercise 7.

Suppose that X_{1}, \ldots, X_{n} form a random sample from a normal distribution with unknown mean θ and variance σ^{2}. Assuming that $\theta \neq 0$, determine the asymptotic distribution of \bar{X}_{n}^{3}.

Solution

We are asking for the asymptotic distribution of $g\left(\bar{X}_{n}\right)$, where $g(x)=x^{3}$. The distribution of \bar{X}_{n} is normal with mean θ and variance $\frac{\sigma^{2}}{n}$. According to the delta method, the asymptotic distribution of $g\left(\bar{X}_{n}\right)$ should be normal distribution with mean $g(\theta)=\theta^{3}$ and variance $\frac{\sigma^{2}}{n} \cdot\left[g^{\prime}(\theta)\right]^{2}=9 \theta^{4} \cdot \frac{\sigma^{2}}{n}$.

