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Probability Basics

▶ Probability spaces formalize uncertainty.
▶ Sample spaces describe possible outcomes of a random

experiment.
▶ Events are subsets of the sample space.
▶ Probability measure defines how probable events are.
▶ We need to define them on sets of events that are

measurable, i.e., σ-algebras.
▶ Probability measures need to satisfy the axioms of

probability.
▶ In discrete uniform sample spaces, we can compute

probabilities by counting (a) the number of outcomes in our
event (b) the number of outcomes in the sample space.
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Independence/Conditional Probability/Bayes Rule

▶ Two events are called independent when knowing the value
of one doesn’t influence the probability of the value of the
other.

▶ The conditional probability of A given B denotes the
probability of event A in a world where B has occurred.

▶ We can use the multiplication to compute conditional,
marginal and joint probabilities.

▶ Bayes rule connects P (A|B) and P (B|A). These two are
confused but they are not the same.
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Joint Distributions

▶ Two random variables have a bivariate joint distribution.
▶ More than two RVs have a multivariate joint distribution.
▶ We can compute marginal, conditional distributions from

the joint pf.
▶ Independence is defined for RVs.
▶ Functions of RVs are RVs.
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Conditional Probability
The Behavioral Risk Factor Surveillance System (BRFSS) is an annual
telephone survey designed to identify risk factors in the adult population
and report emerging health trends. The following table displays the
distribution of health status of respondents to this survey (excellent, very
good, good, fair, poor) and whether or not they have health insurance.

1. Are being in excellent health and having health coverage mutually
exclusive?

2. What is the probability that a randomly chosen individual has
excellent health?

3. What is the probability that a randomly chosen individual has
excellent health given that he has health coverage?

4. What is the probability that a randomly chosen individual has
excellent health given that he doesn’t have health coverage?

5. Do having excellent health and having health coverage appear to be
independent?
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Solution

1. No, there are individuals who are both excellent in health
and have health coverage.

2. P( excellent health ) = 0.2329

3. P(excellent health | health coverage) = 0.2099/0.8738 =
0.24

4. P(excellent health | no health coverage) = 0.0230/0.1262 =
0.18

5. No, because the probability that a person has excellent
health varies between the two health coverage categories
(24% vs 18% ). That is, knowing something about
someone’s health coverage provides useful information in
predicting whether the person has excellent health, which
means the variables are not independent.
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Example

▶ Defaulting on a loan means failing to pay back on time.
The default rate among a bank’s clients is 1%. You develop
a test to predict which clients will default and which will
not. Your test gives 4% false positives, i.e., predicts a client
will default who in fact will not. The test makes no false
negatives, i.e., it never predicts that a client will not default
when in fact they will.

1. Suppose a client tests positive. What is the probability that
they will default?

2. Someone offers to bet you that the client you tested above
will not default. They want you to pay them 100 euro if the
client does not default, and they will pay you 400 euro if
the client defaults. Should you take the bet?
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Expectations

▶ Expectation is a summary of a distribution.
▶ We can compute the expectation of a function of an RV

using LOTUS.
▶ Expectations are linear.
▶ Variance is a summary of how spread out a distribution is.
▶ Covariance describes how much two variables vary together.
▶ Correlation is covariance without scale.
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Conditional Expectation/Moments

▶ Conditional Expectation, Conditional Variance are
functions of the conditioning variable.

▶ Law of total expectation/law of total variance can help us
compute variances and expectations of complex functions.

▶ The means of powers Xk of an RV X are called moments of
X.

▶ They can help us derive distributions of sums of
independent random variables and prove limiting properties
of distributions.
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Special Distributions

Distribution PMF/PDF and Support Expected Value Variance MGF

Bernoulli
Bern(p)

P (X = 1) = p

P (X = 0) = q = 1 − p p pq q + pet

Binomial
Bin(n, p)

P (X = k) =
(
n
k

)
pkqn−k

k ∈ {0, 1, 2, . . . n} np npq (q + pet)n

Geometric
Geom(p)

P (X = k) = qkp

k ∈ {0, 1, 2, . . . } q/p q/p2 p

1−qet
, qet < 1

Poisson
Pois(λ)

P (X = k) = e−λλk

k!

k ∈ {0, 1, 2, . . . } λ λ eλ(et−1)

Uniform
Unif(a, b)

f(x) = 1
b−a

x ∈ (a, b) a+b
2

(b−a)2

12
etb−eta

t(b−a)

Normal
(µ, σ2)

f(x) = 1
σ
√

2π
e−(x−µ)2(2σ2)

x ∈ (−∞,∞) µ σ2 e
tµ+σ2t2

2

Exponential
Expo(λ)

f(x) = λe−λx

x ∈ (0,∞) 1
λ

1
λ2

λ
λ−t

, t < λ
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Large Random Samples

▶ Inequalities (Markov, Chebysev) bound how far away a
random variable can be from its mean.

▶ The average of a random sample of i.i.d. random variables
is called their sample mean.

▶ WLLN: The sample mean converges in probability to the
true distribution mean.

▶ CLT: The sample mean is asymptotically normal.
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Example

▶ You are doing a poll on “ratio of people who believe in
climate change”.

▶ True ratio: p, estimate Xn.
▶ Your boss wants a guarantee that your prediction will be

“off” by more than 1% with probability at most 5%

▶ No guarantee for finding exactly p, so

P (|Xn − p| ≥ 0.01) ≤ 0.05

▶ Apply Chebysev inequality with t = 0.01:
▶ Apply CLT:
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Bayesian Inference

▶ Pick a prior distribution.
▶ Compute the likelihood.
▶ Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution ∝ Likelihood × Prior Distribution

▶ Perform Sensitivity Analysis.
▶ Summarize the posterior distribution:

▶ Posterior mean minimizes squared error loss.
▶ Posterior median minimizes absolute error loss.
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MLE estimation

▶ Find the likelihood function.
▶ Find the log likelihood function.
▶ Take the derivative to find the global optimum θ̂

▶ Use the second derivative to check that θ̂ is a maximizer.
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Example
The data

x = {1, 16, 13, 9, 30, 6, 2, 21, 1}

are an i.i.d. sample from a distribution with p.m.f:

Pθ(X = x) = (1− θ)θx, x ∈= {0, 1, 2, . . .}

for some θ ∈ (0, 1) 1

1. Find the likelihood function and MLE for θ.
2. Find the method of moments estimator for θ.
3. Using a Beta(α, β) prior for θ, find the posterior

distribution f(θ|x).

Useful formulae
Beta distribution: f(x) = xα−1(1−x)β−1

B(α,β) where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ is the Gamma function.
Geometric distribution: f(x) = (1− p)xp, E[x] = 1−p

p
1this is the Geometric distribution but parameterized in terms of the

failure probability instead of the more usual success probability.
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