Lecture Summary

7.5 Maximum Likelihood Estimation

7.6 Properties of Maximum Likelihood Estimators

Recap

Steps to MLE estimation:

- ▶ Find the likelihood function.
- ▶ Find the log likelihood function.
- ► Take the derivative to find the global optimum $\hat{\theta}$
- ▶ Use the second derivative to check that $\hat{\theta}$ is a maximizer.

Examples

Let X₁,..., X_n be i.i.d. Uniform [0, θ], where θ > 0. Find θ̂
Let X₁,..., X_n be i.i.d. Uniform [θ, θ + 1]. Find θ̂

Examples

- ► Let X_1, \ldots, X_n be i.i.d. Uniform $[0, \theta]$, where $\theta > 0$. Find $\hat{\theta}$
- ► Let X_1, \ldots, X_n be i.i.d. Uniform $[\theta, \theta + 1]$. Find $\hat{\theta}$
- ▶ Does not always exist.
- ▶ Is not always unique.

Example

Sampling from a Gamma Distribution.

Suppose that X_1, \ldots, X_n form a random sample from the gamma distribution for which the p.d.f. is as follows:

$$f(x \mid \alpha) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \text{ for } x > 0.$$

4/11

Find the MLE for α , $(\alpha > 0)$.

Numerical computation

Figure: Enter Caption

Newton's Method.

Let $f(\theta)$ be a real-valued function of a real variable, and suppose that we wish to solve the equation $f(\theta) = 0$. Let θ_0 be an initial guess at the solution. Newton's method replaces the initial guess with the updated guess

Method of Moments

- $X_1, \ldots, X_n \sim \text{Distribution}(k \text{-dimensional parameter } \theta)$ with at least k finite moments.
- Reminder: *j*-th moment of X_i : $\mu_j(\theta) = E\left(X_i^j \mid \theta\right)$
- Define the sample *j*-th moment: $m_j = \frac{1}{n} \sum_{i=1}^n X_i^j$ for $j = 1, \dots, k$.
- Set up the k equations $m_j = \mu_j(\theta)$ and then solve for θ .

Reminder

Definition (Gamma distribution)

A RVX has the Gamma distribution with parameters $\alpha, \beta > 0$ if

$$f(x|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & x > 0\\ 0 & otherwise \end{cases}$$

イロト イヨト イヨト イヨト 三日

7/11

- ► Suitable for RVs in $(0, \infty)$
- Parameter space: $\alpha, \beta > 0$.

•
$$E(X) = \frac{\alpha}{\beta}, Var(X) = \frac{\alpha}{\beta^2}.$$

• MGF: $\left(1 - \frac{t}{\beta}\right)^{-\alpha}$ for $t < \beta$

Summary - Estimators

Bayesian Inference

- Mean of the posterior distribution is a Bayes estimator for squared error loss.
- Median of the posterior is a Bayes estimator for absolute loss.
- ▶ Mode of the posterior is the Maximum A Posteriori (MAP) estimator (also a popular choice).

MLE

▶ MLE estimator maximizes the likelihood function.

MOM

 Method of moments estimator matches moments to sample moments. If $\hat{\theta}$ is the maximum likelihood estimator of θ and if g is a one-to-one function, then $g(\hat{\theta})$ is the maximum likelihood estimator of $g(\theta)$.

Example

Assume $X_1, \ldots, X_n \sim Expo(\theta)$. θ is interpreted as the failure rate of electronic components.

- Find the MLE estimate for the failure rate $\hat{\theta}_{MLE}$.
- Find the MLE estimate for the average lifetime $\psi = 1/\theta$.

Properties of Estimators

An estimator is a function of the random sample:

$$\hat{\theta}(X_1,\ldots,X_n) = f(X_1,\ldots,X_n)$$

Consistent Estimators

A sequence of estimators that converges in probability to the unknown value of the parameter being estimated, as $n \to \infty$, is called a consistent sequence of estimators.

Asymptotically Normal Estimators

A sequence of estimators that converges in distribution to a normal distribution is called an asymptotically normal sequence of estimators.

MLE estimators are usually consistent and asymptotically normal

Unbiased Estimator/Bias.

An estimator $\delta(\mathbf{X})$ is an unbiased estimator of a function $g(\theta)$ of the parameter θ if $E_{\theta}[\delta(\mathbf{X})] = g(\theta)$ for every possible value of θ . An estimator that is not unbiased is called a biased estimator. The difference between the expectation of an estimator and $g(\theta)$ is called the bias of the estimator. That is, the bias of δ as an estimator of $g(\theta)$ is $E_{\theta}[\delta(\mathbf{X})] - g(\theta)$, and δ is unbiased if and only if the bias is 0 for all θ .