Lecture Summary

7.5 Maximum Likelihood Estimation

7.6 Properties of Maximum Likelihood Estimators
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Recap

Steps to MLE estimation:
» Find the likelihood function.
» Find the log likelihood function.
» Take the derivative to find the global optimum 6

» Use the second derivative to check that @ is a maximizer.
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Examples

» Let Xi,...,X, beiid. Uniform [0, 6], where § > 0. Find 6
» Let Xi,...,X, beiid. Uniform [0,0 + 1]. Find 6
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Examples

» Let Xi,...,X, beiid. Uniform [0, 6], where § > 0. Find 6
» Let Xi,...,X, beiid. Uniform [0,0 + 1]. Find 6

> Does not always exist.

» [s not always unique.
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Example

Sampling from a Gamma Distribution.
Suppose that Xi,..., X, form a random sample from the gamma
distribution for which the p.d.f. is as follows:

1
I(a)
Find the MLE for «, (a > 0).

22 1™ for > 0.

fla|a) =

4/11



Numerical computation

Ilustration of Newton’s Method

1)

Figure: Enter Caption

Newton’s Method.

Let f(0) be a real-valued function of a real variable, and suppose
that we wish to solve the equation f(€) = 0. Let p be an initial
guess at the solution. Newton’s method replaces the initial guess

with the updated guess

N _ N

f (6o)
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Method of Moments

» Xi,...,X, ~ Distribution(k-dimensional parameter 6)
with at least k finite moments.

» Reminder: j-th moment of X;: p;(0) = F (ij | 0)

» Define the sample j-th moment: m; = %E?:l Xg for
j=1,... k.
> Set up the k equations m; = p;(#) and then solve for 6.
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Reminder

Definition (Gamma distribution)
A RVX has the Gamma distribution with parameters «, 8 > 0 if

B pa—le=Bz 45
T, = F(a)x ¢
f(le ) { 0 otherwise
» Suitable for RVs in (0, co)
» Parameter space: o, 3 > 0.

> E(X) =3 Var(X) = 5

> MGF:(l — %>_a fort < g
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Summary - Estimators

Bayesian Inference
> Mean of the posterior distribution is a Bayes estimator for
squared error loss.
» Median of the posterior is a Bayes estimator for absolute
loss.
» Mode of the posterior is the Maximum A Posteriori (MAP)
estimator (also a popular choice).

MLE

» MLE estimator maximizes the likelihood function.

MOM
» Method of moments estimator matches moments to sample
moments.

8/11



Invariance Property of MLE

If § is the maximum likelihood estimator of 6 and if g is a one-

A~

to-one function, then g(6) is the maximum likelihood estimator
of g(0).
Example

Assume Xi,..., X, ~ Expo(f). 0 is interpreted as the failure
rate of electronic components.

» Find the MLE estimate for the failure rate éMLE.
» Find the MLE estimate for the average lifetime ¢ = 1/6.

9/11



Properties of Estimators

An estimator is a function of the random sample:

0(X1,.... X)) = f(X1,..., Xp)

Consistent Estimators

A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n — oo, is
called a consistent sequence of estimators.

Asymptotically Normal Estimators

A sequence of estimators that converges in distribution to a nor-
mal distribution is called an asymptotically normal sequence of
estimators.

MLE estimators are usually consistent and asymptotically
normal
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Unbiased Estimators

Unbiased Estimator/Bias.

An estimator §(X) is an unbiased estimator of a function g()
of the parameter 6 if Eg[0(X)] = g(6) for every possible value of
0. An estimator that is not unbiased is called a biased estimator.
The difference between the expectation of an estimator and g(6)
is called the bias of the estimator. That is, the bias of § as an
estimator of () is Fy[0(X)]—¢g(#), and 0 is unbiased if and only
if the bias is 0 for all 6.
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