
Lecture Summary

7.5 Maximum Likelihood Estimation
7.6 Properties of Maximum Likelihood Estimators
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Recap

Steps to MLE estimation:
▶ Find the likelihood function.
▶ Find the log likelihood function.
▶ Take the derivative to find the global optimum θ̂

▶ Use the second derivative to check that θ̂ is a maximizer.
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Examples

▶ Let X1, . . . , Xn be i.i.d. Uniform [0, θ], where θ > 0. Find θ̂
▶ Let X1, . . . , Xn be i.i.d. Uniform [θ, θ + 1]. Find θ̂

▶ Does not always exist.
▶ Is not always unique.
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Example

Sampling from a Gamma Distribution.
Suppose that X1, . . . , Xn form a random sample from the gamma
distribution for which the p.d.f. is as follows:

f(x | α) = 1

Γ(α)
xα−1e−x for x > 0.

Find the MLE for α, (α > 0).
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Numerical computation

Figure: Enter Caption

Newton’s Method.
Let f(θ) be a real-valued function of a real variable, and suppose
that we wish to solve the equation f(θ) = 0. Let θ0 be an initial
guess at the solution. Newton’s method replaces the initial guess
with the updated guess

θ1 = θ0 −
f (θ0)

f ′ (θ0)
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Method of Moments

▶ X1, . . . , Xn ∼ Distribution(k-dimensional parameter θ)
with at least k finite moments.

▶ Reminder: j-th moment of Xi: µj(θ) = E
(
Xj

i | θ
)

▶ Define the sample j-th moment: mj =
1
n

∑n
i=1X

j
i for

j = 1, . . . , k.
▶ Set up the k equations mj = µj(θ) and then solve for θ.
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Reminder

Definition (Gamma distribution)
A RVX has the Gamma distribution with parameters α, β > 0 if

f(x|α, β) =

{
βα

Γ(α)x
α−1e−βx x > 0

0 otherwise

▶ Suitable for RVs in (0,∞)

▶ Parameter space: α, β > 0.
▶ E(X) = α

β , V ar(X) = α
β2 .

▶ MGF:
(
1− t

β

)−α
for t < β
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Summary - Estimators

Bayesian Inference
▶ Mean of the posterior distribution is a Bayes estimator for

squared error loss.
▶ Median of the posterior is a Bayes estimator for absolute

loss.
▶ Mode of the posterior is the Maximum A Posteriori (MAP)

estimator (also a popular choice).

MLE
▶ MLE estimator maximizes the likelihood function.

MOM
▶ Method of moments estimator matches moments to sample

moments.
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Invariance Property of MLE

If θ̂ is the maximum likelihood estimator of θ and if g is a one-
to-one function, then g(θ̂) is the maximum likelihood estimator
of g(θ).

Example
Assume X1, . . . , Xn ∼ Expo(θ). θ is interpreted as the failure
rate of electronic components.
▶ Find the MLE estimate for the failure rate θ̂MLE .
▶ Find the MLE estimate for the average lifetime ψ = 1/θ.

9 / 11



Properties of Estimators

An estimator is a function of the random sample:

θ̂(X1, . . . , Xn) = f(X1, . . . , Xn)

Consistent Estimators
A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n → ∞, is
called a consistent sequence of estimators.

Asymptotically Normal Estimators
A sequence of estimators that converges in distribution to a nor-
mal distribution is called an asymptotically normal sequence of
estimators.
MLE estimators are usually consistent and asymptotically
normal
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Unbiased Estimators

Unbiased Estimator/Bias.
An estimator δ(X) is an unbiased estimator of a function g(θ)
of the parameter θ if Eθ[δ(X)] = g(θ) for every possible value of
θ. An estimator that is not unbiased is called a biased estimator.
The difference between the expectation of an estimator and g(θ)
is called the bias of the estimator. That is, the bias of δ as an
estimator of g(θ) is Eθ[δ(X)]−g(θ), and δ is unbiased if and only
if the bias is 0 for all θ.
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