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Lecture Summary

7.4 Bayes Estimators
7.5 Maximum Likelihood Estimation
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Recap

▶ Statistical Inferences draws conclusions about unknown
parameters using data.

▶ Two schools: Bayesian and Frequentist.

▶ Pick a prior distribution.
▶ Compute the likelihood.
▶ Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution ∝ Likelihood × Prior Distribution

▶ Perform Sensitivity Analysis.
▶ Summarize the posterior distribution.
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Another Example of Bayesian estimation - Normal
distribution

▶ Let X1, . . . , Xn be a random sample from N
(
θ, σ2

)
where

σ2 is known
▶ Let the prior distribution of θ be N

(
µ0, ν

2
0

)
where µ0 and

ν20 are known.
▶ Show that the posterior distribution p(θ | x) is N

(
µ1, ν

2
1

)
where

µ1 =
σ2µ0 + nν20xn

σ2 + nν20
and ν21 =

σ2ν20
σ2 + nν20

The posterior mean is a linear combination of the prior mean µ0

and the observed sample mean.
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Conjugate priors

Likelihood Prior Posterior

Bernoulli(p) Beta(α, β) Beta(α+
∑n

i=1 xi, β + n−
∑n

i=1 xi)

Bin(N, p) Beta(α, β) Beta(α+
∑n

i=1 xi, β + n−
∑n

i=1 xi)

Pois(λ) Gamma(α, β) Gamma(α+
∑n

i=1 xi, β + n)

Expo(λ) Gamma(α, β) Gamma(α+ n, β +
∑n

i=1 xi)

N (θ, σ2), known σ2 N (µ0, ν0) N (σ
2µ0+nν0xn

σ2+nν0
,

σ2ν2
0

σ2+nν2
0
)
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Improper priors

▶ Improper Prior: A "pdf" p(θ) where
∫
p(θ)dθ = ∞

▶ Used to try to put more emphasis on data and down play
the prior

▶ Used when there is little or no prior information about θ.
▶ Not clear that an improper prior is necessarily

"non-informative".
▶ Danger: We always need to check that the posterior pdf is

proper! (Integrates to 1)
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Improper prior for Normal Distribution

▶ X1, . . . , Xn ∼ N (µ, 1)

f(x) =
1√
2π

e−
1
2
(x−µ)2

▶ ξ(µ) = 1

▶ f(µ|x1, . . . , xn) ∼ N (Xn, 1/n)
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Point Estimator

▶ Often people wish to estimate the unknown parameter θ
with a single number.

Suppose our observable data X1, . . . , Xn is i.i.d.
f(x | θ), θ ∈ Ω ⊂ R.

Estimator
A real valued function δ (X1, . . . , Xn) is an estimator of θ.

Estimate
Once you observe x1, . . . , xn, θ̂ : δ (x1, . . . , xn), i.e. estimator
evaluated at the observed values is the estimate for θ

▶ An estimator is a statistic and a random variable.
▶ An estimate is a number.
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Loss Function

Loss function:
A real valued function L(θ, a) where θ ∈ Ω and a ∈ R.
L(θ, a) = what we loose by using a as an estimate when θ is the
true value of the parameter.

Example Loss Functions
▶ Squared error loss function: L(θ, a) = (θ − a)2

▶ Absolute error loss function: L(θ, a) = |θ − a|
▶ Zero-one loss: L(θ, a) = 0, if θ = a, 1, otherwise.

Expected Loss
E[L(θ, a)] =

∫
Ω L(θ, a)ξ(θ)dθ
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Bayes Estimator

Idea
Choose an estimator δ(X) so that we minimize the expected loss.

Bayes Estimator/Estimate.
Let L(θ, a) be a loss function. For each possible value x of X, let
δ∗(x) be a value of a such that E[L(θ, a) | x] is minimized. Then
δ∗ is called a Bayes estimator of θ. Once X = x is observed,
δ∗(x) is called a Bayes estimate of θ.
Another way to describe a Bayes estimator δ∗ is to note that, for
each possible value x of X, the value δ̄∗(x) is chosen so that

E [L (θ, δ∗(x)) | x] = min
All a

E[L(θ, a) | x].
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Bayes Estimators

Bayes Estimator for Squared Error Loss
Let θ be a real-valued parameter. Suppose that the squared error
loss function is used and that the posterior mean of θ,E(θ | X),
is finite. Then, a Bayes estimator of θ is δ∗(X) = E(θ | X).

Bayes Estimator for Absolute Error Loss
When the absolute error loss function is used, a Bayes estimator
of a real valued parameter is δ∗(X) equal to a median of the
posterior distribution of θ.
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Consistency

Consistent estimators
A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n → ∞, is
called a consistent sequence of estimators.

Example
Consider the Bernoulli Distribution with true unknown parameter
θ. The Bayes Estimator for Squared Error Loss is the mean of
the posterior,

δ∗(X) =
α+

∑n
i=1Xi

α+ β + n

p→ θ

Under fairly general conditions and for a wide range of loss func-
tions, the Bayes estimator is consistent.

12 / 18



Consistency

Consistent estimators
A sequence of estimators that converges in probability to the
unknown value of the parameter being estimated, as n → ∞, is
called a consistent sequence of estimators.

Example
Consider the Bernoulli Distribution with true unknown parameter
θ. The Bayes Estimator for Squared Error Loss is the mean of
the posterior,

δ∗(X) =
α+

∑n
i=1Xi

α+ β + n

p→ θ

Under fairly general conditions and for a wide range of loss func-
tions, the Bayes estimator is consistent.

12 / 18



Recap

▶ Bayesian estimation computes the posterior distribution for
parameter(s) θ.

▶ Steps to Bayesian Estimation: Define prior, compute
likelihood, compute posterior.

▶ You can then select a single point as the estimate, e.g., the
posterior mean/mode/median.

▶ The process (function) of finding a point estimate is called
an estimator.

▶ The value of the estimator for a given set of observations is
the estimate.

▶ Bayes estimators minimize a loss function for every possible
set of data.
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Likelihood

▶ What if you are a frequentist, and do not want to use prior
distributions?

▶ When the joint pf fn(x | θ) is regarded as a function of θ
for given observations x1, . . . , xn it is called the likelihood
function.

Maximum Likelihood Estimator/Estimate.
(MLE): For each possible observed vector x, let δ(x) ∈ Ω denote
a value of θ ∈ Ω for which the likelihood function fn(x | θ) is a
maximum, and let θ̂ = δ(X) be the estimator of θ defined in this
way. The estimator θ̂ is called a maximum likelihood estimator of
θ. After X = x is observed, the value δ(x) is called a maximum
likelihood estimate of θ.
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Maximum Likelihood Estimator

▶ Given X = x, the maximum likelihood estimate (MLE) will
be a function of x. Notation: θ̂ = δ(X)

▶ Potentially confusing notation: Sometimes θ̂ is used for
both the estimator and the estimate.

▶ Note: The MLE is required to be in the parameter space Ω.
▶ Often it is easier to maximize the log-likelihood

L(θ) = log fn(x | θ)

Example
Assume Xi ∼ Expo(λ), and we observe x1 = 1.5, x2 = 2.1, x3 = 3
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MLE

▶ We pick the parameter that makes the observed data most
likely.

▶ But: The likelihood is not a pdf/pf: If the likelihood of θ1 is
larger than the likelihood of θ1, i.e. fn (x | θ2) > fn (x | θ1)
it does NOT mean that θ2 is more likely.

▶ Remember: θ is not random here.

16 / 18



Examples

▶ Let X ∼ Bernoulli(θ). Find the maximum likelihood
estimator of θ. Say we observe

∑
xi = 3, what is the

maximum likelihood estimate of θ?
▶ Let X1, . . . , Xn be i.i.d. N

(
µ, σ2

)
.

▶ Find the MLE of µ when σ2 is known.

17 / 18



Recap

Steps to MLE estimation:
▶ Find the likelihood function.
▶ Find the log likelihood function.
▶ Take the derivative to find the global optimum θ̂

▶ Use the second derivative to check that θ̂ is a maximizer.
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