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Lecture Summary

▶ 7.1 Statistical Inference
▶ 7.2 Prior and Posterior Distributions
▶ 7.3 Conjugate Prior Distributions
▶ 5.7 The Beta Distributions
▶ 5.8 The Gamma Distributions
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Statistical Inference

We have seen statistical models in the form of probability
distributions:

f(x | θ)

For example:
▶ Life time of a Christmas light series follows the Expo(θ).
▶ The average volume of 63 drinks is approximately normal

with mean θ.
▶ The number of people that have a disease out of a group of

N people follows the Binomial(N, θ) distribution.
In practice the value of the parameter θ is unknown.

3 / 24



Statistical Inference

Statistical Inference: Given the data we have observed what can
we say about θ ?
▶ i.e., we observe random variables X1, . . . , Xn that we

assume follow our statistical model and then we want to
draw probabilistic conclusions about the parameter θ.

For example:
▶ I tested 5 Christmas light series from the same

manufacturer and they lasted for 21, 103, 76, 88 and 96 days.
▶ Assuming that the life times are independent and follow

Expo(θ), what does this data set tell me about the failure
rate θ?

4 / 24



Statistical Inference - Types of Inference
Say I take a random sample of 100 people and test them all for
a disease. If 3 of them have the disease, what can I say about
θ = the prevalence of the disease in the population?

Estimation
Say I estimate θ as θ̂ = 3/100 = 3%.

Confidence intervals
How sure am I about this number? I want uncertainty bounds
on my estimate.

Testing hypotheses
Can I be confident that the prevalence of the disease is higher
than 2%?

Prediction
If we test 40 more people for the disease, how many people do we
predict have the disease?
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Statistic

I want to use the 100 patients to make the statistical inferences
above. Do I need to keep all 100 values, or can I use a summary?

Definition
Suppose that the observable random variables of interest are
X1, . . . , Xn. Let r be an arbitrary real-valued function of n real
variables. Then the random variable T = r (X1, . . . , Xn) is called
a statistic.

Examples of Statistics.
▶ The sample mean Xn.
▶ The maximum Yn of the values of X1, . . . , Xn.
▶ The function r (X1, . . . , Xn), which has the constant value 3

for all values of X1, . . . , Xn.
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Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?
▶ Do we think about f(x | θ) as the conditional pf of X given

θ or
▶ do we think about f(x | θ) as a pf indexed by θ that is

unknown?
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Bayesians vs Frequentists:

Consider the prevalence of a disease.

Frequentists
The proportion q of the population that has the disease, is not a
random phenomenon but a fixed number that is simply unknown

Bayesians:
The proportion Q of the population that has the disease is un-
known and the distribution of Q is a subjective probability dis-
tribution that expresses the experimenters (prior) beliefs about
Q
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Bayesian Inference

Calculating the posterior
Let X1, . . . , Xn be a random sample with pf f(x | θ) and let ξ(θ)
be the prior pf of θ. The the posterior pf is

f(θ | x) = f (x1 | θ)× · · · × f (xn | θ) ξ(θ)
f(x)

where

f(x) =

∫
θ
f(x | θ)ξ(θ)dθ

is the marginal likelihood of X1, . . . , Xn
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Bayesian Inference

Prior distribution
The distribution we assign to parameters before observing the
random variables. Notation for the prior pf: ξ(θ)/f(θ)

Likelihood
When the joint pf f(x | θ) is regarded as a function of θ for given
observations x1, . . . , xn it is called the likelihood function.

Posterior distribution
The conditional distribution of the parameters θ given the ob-
served random variables X1, . . . , Xn. Notation for the posterior
pf: We will use

f (θ | x1, . . . , xn) = p(θ | x)
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Example: Bernoulli Likelihood and a Beta Prior

A Clinical Trial. Suppose that 40 patients are going to be given
a treatment for a condition and that we will observe for each
patient whether or not they recover from the condition. We are
most likely also interested in a large collection of additional
patients besides the 40 to be observed.
▶ For each patient i = 1, 2, . . ., let Xi = 1 if patient i recovers,

and let Xi = 0 if not.
▶ Xi ∼ Bernoulli(p), 0 ≤ p ≤ 1.
▶ WLLN: The proportion of the first n patients who recover

Xn
p→ p as n goes to infinity.

▶ I need a prior defined on the parameter space [0, 1]
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Beta Distributions distributions

Definition (Beta distribution)
A RV X has the Beta distribution with parameters α, β > 0 if

f(x|α, β) =
{ 1

B(α,β)x
α−1(1− x)β−1 x ∈ [0, 1]

0 otherwise

▶ Suitable for RVs in [0, 1]

▶ Parameter space: α, β > 0.
▶ E(X) = α

α+β , V ar(X) = αβ
(α+β)2(α+β+1)

.

▶ MGF: 1 +
∑∞

k=1

(∏k−1
r=0

α+r
α+β+r

)
tk

k! .
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Example: Beta-Bernoulli distribution
▶ I observe X1, . . . , X40 with

∑40
i=1 xi = 10, and I want to

find the posterior distribution of θ.

▶ Pick a prior, e.g., Beta(2, 2):

ξ(θ) =
1

B(2, 2)
θ(1− θ)

▶ Compute the likelihood:

f(x1, . . . , x40|θ) =
40∏
i=1

f(xi|θ) = θ10(1− θ)30

▶ Compute the posterior up to a constant:

f(θ|x1, . . . , x40) =
1

f(x1, . . . , x40)
ξ(θ)f(x1, . . . , x40|θ) =

Cθ10+1(1− θ)30+1

▶ C is a constant, f(θ|x1, . . . , x40) is a Beta(12, 32)
distribution.
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Example: Beta-Bernoulli

▶ In the general case:
▶ If the prior is ξ(θ) = Beta(α, β), the posterior is

f(θ|x1, . . . , xn) = Beta(α+
∑n

i=1 xi, β + n−
∑n

i=1 xi).
▶ When the prior and the posterior belong to the same family

of distributions, we say the distribution is a conjugate prior
for the distribution of the likelihood.

▶ For example, Beta is a conjugate prior for the Bernoulli
distribution.
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Prior and Posterior

Figure: Prior and posterior distributions for parameter θ

15 / 24



Prior distributions

▶ The prior distribution should reflect what we know apriori
about θ.

▶ For example: Beta(2, 10) puts almost all of the density
below 0.5 and has a mean 2/(2 + 10) = 0.167, saying that a
prevalence of more then 50% is very unlikely.

▶ Using Beta (1, 1), i.e. the Uniform (0, 1) indicates that a
priori all values between 0 and 1 are equally likely.
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Choosing a prior

▶ Deciding what prior distribution to use can be very difficult.
▶ We need a distribution (e.g. Beta) and its hyperparameters

(e.g. α, β).
▶ When hyperparameters are difficult to interpret we can

sometimes set a mean and a variance and solve for
parameters E.g: What Beta prior has mean 0.1 and
variance 0.12 ?

▶ If more than one option seems sensible, we perform
sensitivity analysis.
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Sensitivity Analysis

We compare the posteriors we get when using the different
priors.
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Sensitivity Analysis

The posterior is influenced both by sample size and the prior
variance
▶ Larger sample size ⇒ less the prior influences the posterior
▶ Larger prior variance ⇒ the less the prior influences the

posterior Prior variance: 0.011
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Steps To Bayesian Estimation

▶ Pick a prior distribution.
▶ Compute the likelihood.
▶ Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution ∝ Likelihood × Prior Distribution

▶ Perform Sensitivity Analysis.
▶ Summarize the posterior distribution.
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Gamma Distributions

Definition (Gamma distribution)
A RVX has the Gamma distribution with parameters α, β > 0 if

f(x|α, β) =

{
βα

Γ(α)x
α−1e−βx x > 0

0 otherwise

▶ Suitable for RVs in (0,∞)

▶ Parameter space: α, β > 0.
▶ E(X) = α

β , V ar(X) = α
β2 .

▶ MGF:
(
1− t

β

)−α
for t < β
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Steps To Bayesian Estimation

▶ Pick a prior distribution.
▶ Compute the likelihood.
▶ Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution ∝ Likelihood × Prior Distribution
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Another Example: Exponential Distribution

▶ I observe X1, . . . , Xn where Xi ∼ Expo(λ)

▶ Pick a prior for λ: λ ∼ Gamma(α, β)

▶ Compute the posterior up to a constant

Reminder

Gamma(α, β) : f(x|α, β) =

{
βα

Γ(α)x
α−1e−βx x > 0

0 otherwise

Expo(β) : f(x | β) =

{
βe−βx for x > 0,

0 for x ≤ 0.
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Recap: Steps To Bayesian Estimation

▶ Pick a prior distribution.
▶ Compute the likelihood.
▶ Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution ∝ Likelihood × Prior Distribution

▶ Perform Sensitivity Analysis.
▶ Summarize the posterior distribution.
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	Notice: The posterior mean is always between the prior mean and the observed proportion 0.03
	Effect of sample size and prior variance

