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Statistical Inference

We have seen statistical models in the form of probability
distributions:

f(x]0)
For example:
» Life time of a Christmas light series follows the Expo(6).

» The average volume of 63 drinks is approximately normal
with mean 6.

» The number of people that have a disease out of a group of
N people follows the Binomial(V, 6) distribution.

In practice the value of the parameter 6 is unknown.
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Statistical Inference

Statistical Inference: Given the data we have observed what can
we say about 6 7
P> i.e., we observe random variables X1,..., X, that we
assume follow our statistical model and then we want to
draw probabilistic conclusions about the parameter 6.
For example:
» [ tested 5 Christmas light series from the same
manufacturer and they lasted for 21,103, 76, 88 and 96 days.
» Assuming that the life times are independent and follow
Expo(6), what does this data set tell me about the failure
rate 67

4/24



Statistical Inference - Types of Inference

Say I take a random sample of 100 people and test them all for
a disease. If 3 of them have the disease, what can I say about
f = the prevalence of the disease in the population?

Estimation R
Say I estimate 6 as § = 3/100 = 3%.

Confidence intervals
How sure am I about this number? I want uncertainty bounds
on my estimate.

Testing hypotheses

Can I be confident that the prevalence of the disease is higher
than 2%7?

Prediction
If we test 40 more people for the disease, how many people do we
predict have the disease?
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Statistic

I want to use the 100 patients to make the statistical inferences
above. Do I need to keep all 100 values, or can I use a summary?
Definition

Suppose that the observable random variables of interest are
X1,...,X,. Let r be an arbitrary real-valued function of n real
variables. Then the random variable T' = r (X1, ..., X},) is called
a statistic.

Examples of Statistics.
» The sample mean X ,,.
» The maximum Y,, of the values of X1,...,X,.

» The function r (X1, ..., X,,), which has the constant value 3
for all values of Xq,..., X,,.
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Bayesian vs. Frequentist Inference

Should a parameter be treated as a random variable?
» Do we think about f(x | §) as the conditional pf of X given
0 or

» do we think about f(x | #) as a pf indexed by 6 that is
unknown?
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Bayesians vs Frequentists:

Consider the prevalence of a disease.

Frequentists
The proportion ¢ of the population that has the disease, is not a
random phenomenon but a fixed number that is simply unknown

Bayesians:

The proportion @ of the population that has the disease is un-
known and the distribution of @) is a subjective probability dis-
tribution that expresses the experimenters (prior) beliefs about

Q
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Bayesian Inference

Calculating the posterior

Let X1,..., X, be a random sample with pf f(z | 6) and let £(0)
be the prior pf of 6. The the posterior pf is

fxy [ 0) x--- < f(xn | 0)&(09)
f(x)

fO1%) =

where

f(x) = /9 f(x| 0)E(6)d0

is the marginal likelihood of X1,..., X,

9/24



Bayesian Inference

Prior distribution
The distribution we assign to parameters before observing the
random variables. Notation for the prior pf: £(0)/f(0)

Likelihood
When the joint pf f(x | 0) is regarded as a function of 6 for given
observations x1, ..., z, it is called the likelihood function.

Posterior distribution

The conditional distribution of the parameters 6 given the ob-
served random variables X1,...,X,,. Notation for the posterior
pf: We will use

fO|xy,...,z,) =p(0] %)
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Example: Bernoulli Likelihood and a Beta Prior

A Clinical Trial. Suppose that 40 patients are going to be given
a treatment for a condition and that we will observe for each
patient whether or not they recover from the condition. We are
most likely also interested in a large collection of additional
patients besides the 40 to be observed.
» For each patient ¢ = 1,2, ..., let X; = 1 if patient ¢ recovers,
and let X; = 0 if not.
» X, ~ Bernoulli(p),0 <p < 1.
» WLLN: The proportion of the first n patients who recover
X, 5 p as n goes to infinity.

» I need a prior defined on the parameter space [0, 1]
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Beta Distributions distributions

Definition (Beta distribution)
A RV X has the Beta distribution with parameters «, 5 > 0 if

[l B) = { semet (1—0)’ T ze o]

0 otherwise

» Suitable for RVs in [0, 1]
» Parameter space: «, 3 > 0.

_ _« _ af
tk

kf
> MGF: 1+ Zzo:l (Hr:é aiES—r) !
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Example: Beta-Bernoulli distribution

» [ observe X1, ..., X4 with 2;421 x; = 10, and I want to
find the posterior distribution of 6.
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Example: Beta-Bernoulli distribution
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find the posterior distribution of 6.
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» Compute the likelihood:
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Example: Beta-Bernoulli distribution
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Example: Beta-Bernoulli distribution

» [ observe X1, ..., X4 with 2;421 x; = 10, and I want to
find the posterior distribution of 6.
» Pick a prior, e.g., Beta(2,2):

» Compute the likelihood:

40
f@r,. . a0l0) = [ [ f(zil0) = 6"°(1 - 6)*
=1
» Compute the posterior up to a constant:

1
fO|xy, ..., x40) = m

0910+1 (1 _ 9)30+1

» Cis a constant, f(@|z1,...,x40) is a Beta(12,32)
distribution.

EO)f(x1,...,240]0) =
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Example: Beta-Bernoulli

» In the general case:

» If the prior is £(0) = Beta(a, 3), the posterior is
fOz1,...,xy) = Beta(la + Y 1"z, f+n—Y | z;).

» When the prior and the posterior belong to the same family

of distributions, we say the distribution is a conjugate prior
for the distribution of the likelihood.

» For example, Beta is a conjugate prior for the Bernoulli
distribution.
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Prior and Posterior

Beta Distribution: Beta(2, 2) vs. Beta(12, 32)

6] — Beta(2,2)
— Beta(12, 32}
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e

Figure: Prior and posterior distributions for parameter 6
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Prior distributions

» The prior distribution should reflect what we know apriori
about 6.

» For example: Beta(2,10) puts almost all of the density
below 0.5 and has a mean 2/(2 4+ 10) = 0.167, saying that a
prevalence of more then 50% is very unlikely.

» Using Beta (1, 1), i.e. the Uniform (0, 1) indicates that a
priori all values between 0 and 1 are equally likely.
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Choosing a prior

» Deciding what prior distribution to use can be very difficult.

» We need a distribution (e.g. Beta) and its hyperparameters
(e.g. a,f).

» When hyperparameters are difficult to interpret we can
sometimes set a mean and a variance and solve for
parameters E.g: What Beta prior has mean 0.1 and
variance 0.12 ?

» If more than one option seems sensible, we perform
sensitivity analysis.
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Sensitivity Analysis

Density

Density
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We compare the posteriors we get when using the different

priors.
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Sensitivity Analysis

The posterior is influenced both by sample size and the prior
variance

» Larger sample size = less the prior influences the posterior

» Larger prior variance = the less the prior influences the
posterior Prior variance: 0.011
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Steps To Bayesian Estimation

» Pick a prior distribution.
» Compute the likelihood.

Use Bayes’ theorem to compute the posterior distribution:

v

Posterior Distribution o< Likelihood x Prior Distribution

v

Perform Sensitivity Analysis.

» Summarize the posterior distribution.
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Gamma Distributions

Definition (Gamma distribution)
A RVX has the Gamma distribution with parameters «, 8 > 0 if

B pa—le=Bz 45
T, = F(a)x ¢
f(le ) { 0 otherwise
» Suitable for RVs in (0, co)
» Parameter space: o, 3 > 0.

> E(X) =3 Var(X) = 5

> MGF:(l — %>_a fort < g
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Steps To Bayesian Estimation

» Pick a prior distribution.
» Compute the likelihood.

> Use Bayes’ theorem to compute the posterior distribution:

Posterior Distribution o Likelihood x Prior Distribution
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Another Example: Exponential Distribution

» I observe Xi,..., X, where X; ~ Ezpo(\)
» Pick a prior for A\: A ~ Gamma(a, f)

» Compute the posterior up to a constant

Reminder

B¢ a—1,-Bx
Gamma(a,m:f(xra,ﬁ)—{ O

0 otherwise

Be P for x>0,
0 for z <0.

Ezpo(B) : f(x | B) = {
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Recap: Steps To Bayesian Estimation

» Pick a prior distribution.
» Compute the likelihood.

» Use Bayes’ theorem to compute the posterior distribution:
Posterior Distribution o Likelihood x Prior Distribution

» Perform Sensitivity Analysis.

» Summarize the posterior distribution.
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	Notice: The posterior mean is always between the prior mean and the observed proportion 0.03
	Effect of sample size and prior variance

