Parametric Statistics Large Random Samples

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

October 26, 2023

◆□▶ ◆□▶ ◆目▶ ◆目▶ = 目 = のへで

1/13

Lecture Summary

6.3 The central limit theorem6.4 Correction for continuity

Last time

Let X_1, X_2, \ldots be a sequence of random variables, let X be a random variable.

Convergence in Probability X_1, X_2, \ldots converges in probability to X if

$$\forall \epsilon > 0, \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

Convergence in Distribution X_1, X_2, \ldots converges in distribution to X if

$$\forall \epsilon > 0, \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for all x where F_X is continuous.

Last time

Markov Inequality

Let X be a random variable such that $P(X \ge 0) = 1$. Then for every real number t,

$$P(X \ge t) \le \frac{E(X)}{t}.$$

Chebysev Inequality

Let X be a random variable for which Var(X) exists. Then for every number t > 0,

$$P(|X - E(X)| \ge t) \le \frac{Var(X)}{t^2}.$$

Compute the probability of Uniform

Example

Suppose that a random sample of size n = 12 is taken from the uniform distribution on the interval [0, 1]. We shall approximate the value of $\Pr\left(\left|\overline{X}_n - \frac{1}{2}\right| \le 0.1\right)$

5/13

•
$$E(X_i) = \frac{1}{2}, E(\overline{X}_n) = \frac{1}{2}$$

• $Var(X_i) = \frac{1}{12}, Var(\overline{X}_n) = \frac{1}{12n}$

Lindberg and Lévy

If the random variables X_1, \ldots, X_n form a random sample of size *n* from a given distribution with mean μ and variance σ^2 $(0 < \sigma^2 < \infty)$, then for each fixed number *x*,

$$\lim_{n \to \infty} \Pr\left[\frac{\overline{X}_n - \mu}{\sigma/n^{1/2}} \le x\right] = \Phi(x),$$

where Φ denotes the c.d.f. of the standard normal distribution.

Stable variance

The Delta Method

Sometimes we are interested in the asymptotic behavior of a function of the sample mean.

Delta Method for Average of a Random Sample.

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables from a distribution with mean μ and finite variance σ^2 . Let α be a function with continuous derivative such that $\alpha(\mu)' \neq 0$. Then the asymptotic distribution of

$$\frac{n^{1/2}}{\sigma \alpha'(\mu)} [\alpha(\overline{X}_n) - \alpha(\mu)]$$

is the standard normal distribution.

Example

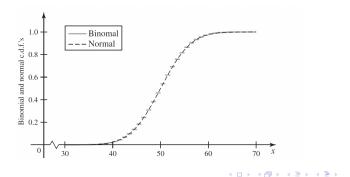
What is the asymptotic limit of $\sqrt{n} \left(\overline{X}_n^2 - \mu^2 \right)$?

Correction for continuity

- ▶ $Y \sim \text{Binomial} \left(n = 100, p = \frac{1}{2}\right)$. We are interested in $P(Y \le 50)$.
- We know that a Binomial $(n = 100, p = \frac{1}{2})$ can be written as the sum of n i.i.d. Bernoulli (p) random variables.
- ► Using CLT:

Correction for continuity

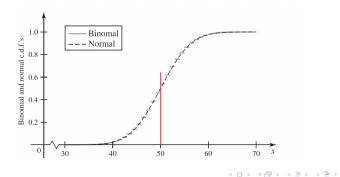
- ▶ $Y \sim \text{Binomial} \left(n = 100, p = \frac{1}{2}\right)$. We are interested in $P(Y \le 50)$.
- We know that a Binomial $(n = 100, p = \frac{1}{2})$ can be written as the sum of n i.i.d. Bernoulli (p) random variables.
- Using CLT: $P(Y \le 50) = \Phi(0) = 0.5$
- Using Binomial: $P(Y \le 50) = 0.539$



3

Correction for continuity

- ▶ $Y \sim \text{Binomial} \left(n = 100, p = \frac{1}{2}\right)$. We are interested in $P(Y \le 50)$.
- We know that a Binomial $(n = 100, p = \frac{1}{2})$ can be written as the sum of n i.i.d. Bernoulli (p) random variables.
- Using CLT: $P(Y \le 50) = \Phi(0) = 0.5$
- Using Binomial: $P(Y \le 50) = 0.539$



Correction for Continuity

- ▶ $Y \sim \text{Binomial} \left(n = 100, p = \frac{1}{2}\right)$. We are interested in $P(Y \le 50)$.
- We know that a Binomial $(n = 100, p = \frac{1}{2})$ can be written as the sum of n i.i.d. Bernoulli (p) random variables.
- Using CLT: $P(Y \le 50) = \Phi(0) = 0.5$
- Using Binomial: $P(Y \le 50) = 0.539$
- ▶ Instead of $Pr(Y \le x)$ use $Pr(Y \le x + 0.5)$, which is larger and usually closer to $Pr(X \le x)$.

▶
$$\Pr(Y = x) = P(x - 0.5 \le Y \le x + 0.5)$$

Application of the CLT

- You are doing a poll on "ratio of people who believe in climate change".
- True ratio: p, estimate \overline{X}_n .
- ▶ Your boss wants a guarantee that your prediction will be "off" by more than 1% with probability at most 5%

Application of the CLT

- You are doing a poll on "ratio of people who believe in climate change".
- ▶ True ratio: p, estimate \overline{X}_n .
- ▶ Your boss wants a guarantee that your prediction will be "off" by more than 1% with probability at most 5%
- \blacktriangleright No guarantee for finding exactly p, so

$$P(|\overline{X}_n - p| \ge 0.01) \le 0.05$$

Apply Chebysev inequality with t = 0.01:
Apply CLT:

Group Exercise

- ▶ Form teams of two.
- ► Go to https://rolladie.net/roll-4-dice.
- Complete the exercise sheet given to you and answer the questions.