Parametric Statistics
 Large Random Samples

Sofia Triantafillou
sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

October 23, 2023

Lecture Summary

6.1 Introduction
6.2 The Law of Large Numbers

The Sample Mean

Definition
Let $X_{1}, \ldots X_{n}$ be random variables. Their average

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

is called their sample mean.

The Sample Mean

Definition
Let $X_{1}, \ldots X_{n}$ be random variables. Their average

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

is called their sample mean.
Mean and variance of the sample mean
Let $X_{1}, \ldots X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then $E\left(\bar{X}_{n}\right)=\mu$, and $\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n$.

Example

- You toss a fair coin.
- How many heads do you expect if you toss it 10 times?

Example

- You toss a fair coin.
- How many heads do you expect if you toss it 10 times?

$$
\operatorname{Pr}(X=5)=\binom{10}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=0.2461
$$

Example

- You toss a fair coin.
- How many heads do you expect if you toss it 10 times?

$$
\operatorname{Pr}(X=5)=\binom{10}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=0.2461
$$

- How many heads do you expect if you toss it 100 times?

$$
\operatorname{Pr}(Y=50)=\binom{100}{50}\left(\frac{1}{2}\right)^{50}\left(\frac{1}{2}\right)^{50}=0.0796
$$

Example

- You toss a fair coin.
- How many heads do you expect if you toss it 10 times?

$$
\operatorname{Pr}(X=5)=\binom{10}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=0.2461
$$

- How many heads do you expect if you toss it 100 times?

$$
\operatorname{Pr}(Y=50)=\binom{100}{50}\left(\frac{1}{2}\right)^{50}\left(\frac{1}{2}\right)^{50}=0.0796
$$

But:

$$
\begin{gathered}
\operatorname{Pr}\left(0.4 \leq \frac{X}{10} \leq 0.6\right)=\operatorname{Pr}(4 \leq X \leq 6)=0.6563 \\
\operatorname{Pr}\left(0.4 \leq \frac{Y}{100} \leq 0.6\right)=\operatorname{Pr}(40 \leq Y \leq 60)=0.9648
\end{gathered}
$$

Weak Law of Large Numbers

Suppose that X_{1}, \ldots, X_{n} form a random sample from a distribution (i.e., X_{1}, \ldots, X_{n} are i.i.d.) for which the mean is μ and the variance is finite. Let $\overline{X_{n}}$ denote the sample mean. Then

$$
\overline{X_{n}} \xrightarrow{p} \mu
$$

- The WLLN has to do with the large sample behavior of the (distribution of the) sample mean.

Sequence of Random Variables

A sequence of random variables is in fact a sequence of functions $X_{n}: S \rightarrow \mathbb{R}$.

Example

Consider the following random experiment: A fair coin is tossed once. Here, the sample space has only two elements $S=\{H, T\}$. We define a sequence of random variables $X_{1}, X_{2}, X_{3}, \cdots$ on this sample space as follows:

$$
X_{n}(s)= \begin{cases}\frac{1}{n+1} & \text { if } s=H \\ 1 & \text { if } s=T\end{cases}
$$

1. Are the X_{i} 's independent?
2. Find the PMF and CDF of $X_{n}, F_{X_{n}}(x)$ for $n=1,2,3, \cdots$.
3. As n goes to infinity, what does $F_{X_{n}}(x)$ look like?

Convergence of Random Variables

Reminder: Arithmetic Convergence
A sequence $a_{1}, a_{2}, a_{3}, \cdots$ converges to a limit L if

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

That is, for any $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon, \quad \text { for all } n>N .
$$

Convergence of Random Variables

Convergence in Distribution

A sequence of random variables $X_{1}, X_{2}, X_{3}, \cdots$ converges in distribution to a random variable X, shown by $X_{n} \xrightarrow{d} X$, if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

for all x at which $F_{X}(x)$ is continuous.
Example
Let $X_{2}, X_{3}, X_{4}, \cdots$ be a sequence of random variable such that

$$
F_{X_{n}}(x)= \begin{cases}1-\left(1-\frac{1}{n}\right)^{n x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Show that X_{n} converges in distribution to Exponential(1).

Convergence of Random Variables

Convergence in Probability

A sequence of random variables $X_{1}, X_{2}, X_{3}, \cdots$ converges in probability to a random variable X, shown by $X_{n} \xrightarrow{p} X$, if

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \epsilon\right)=0, \quad \text { for all } \epsilon>0
$$

Example
Let $X_{n} \sim \operatorname{Exponential}(n)$, show that $X_{n} \xrightarrow{p} 0$. That is, the sequence $X_{1}, X_{2}, X_{3}, \cdots$ converges in probability to the zero random variable X.

Convergence of Random Variables

Convergence in Mean

Let $r \geq 1$ be a fixed number. A sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ converges in the r th mean or in the L^{r} norm to a random variable X, shown by $X_{n} \xrightarrow{L^{r}} X$, if

$$
\lim _{n \rightarrow \infty} E\left(\left|X_{n}-X\right|^{r}\right)=0
$$

If $r=2$, it is called the mean-square convergence, and it is shown by $X_{n} \xrightarrow{\text { m.s. }} X$.

Example
Let $X_{n} \sim$ Uniform $\left(0, \frac{1}{n}\right)$. Show that $X_{n} \xrightarrow{\text { m.s. }} 0$

Convergence of Random Variables

Almost Sure Convergence

A sequence of random variables $X_{1}, X_{2}, X_{3}, \cdots$ converges almost surely to a random variable X, shown by $X_{n} \xrightarrow{\text { a.s. }} X$, if

$$
P\left(\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\epsilon\right)=1
$$

Theorem
Consider the sequence $X_{1}, X_{2}, X_{3}, \cdots$. If for all $\epsilon>0$, we have

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\epsilon\right)<\infty
$$

then $X_{n} \xrightarrow{\text { a.s. }} X$.

Convergence of Random Variables

Convergence in probability implies convergence in distribution
If $X_{n} \xrightarrow{p} X$, then $X_{n} \xrightarrow{d} X$.
The converse is not always true, but special case:
If $X_{n} \xrightarrow{d} c$, where c is a constant, then $X_{n} \xrightarrow{p} c$.
Convergence in mean implies convergence in probability:
If $X_{n} \xrightarrow{L^{r}} X$ for some $r \geq 1$, then $X_{n} \xrightarrow{p} X$.
Almost sure convergence implies convergence in probability: If $X_{n} \xrightarrow{\text { a.s }} X$, then $X_{n} \xrightarrow{p} X$.

Convergence of Random Variables

Continuous Mapping Theorem

Let $X_{1}, X_{2}, X_{3}, \cdots$ be a sequence of random variables. Let also h : $\mathbb{R} \mapsto \mathbb{R}$ be a continuous function. Then, the following statements are true:

1. If $X_{n} \xrightarrow{d} X$, then $h\left(X_{n}\right) \xrightarrow{d} h(X)$.
2. If $X_{n} \xrightarrow{p} X$, then $h\left(X_{n}\right) \xrightarrow{p} h(X)$.
3. If $X_{n} \xrightarrow{\text { a.s. }} X$, then $h\left(X_{n}\right) \xrightarrow{\text { a.s. }} h(X)$.

Inequalities

Markov Inequality
Let X be a random variable such that $P(X \geq 0)=1$. Then for every real number t,

$$
P(X \geq t) \leq \frac{E(X)}{t}
$$

Chebysev Inequality
Let X be a random variable for which $\operatorname{Var}(X)$ exists. Then for every number $t>0$,

$$
P(|X-E(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X_{1}, \ldots, X_{n} form a random sample from a distribution (i.e., X_{1}, \ldots, X_{n} are i.i.d.) for which the mean is μ and the variance is finite. Let $\overline{X_{n}}$ denote the sample mean. Then

$$
\overline{X_{n}} \xrightarrow{p} \mu .
$$

