Parametric Statistics-Recitation 3 (Solutions)

Exercise 1.

Suppose that X and Y have a continuous joint distribution for which the joint p.d.f. is defined as follows:

$$
f(x, y)= \begin{cases}c y^{2} & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine (a) the value of the constant c; (b) $\operatorname{Pr}(X+Y>2) ;(\mathrm{c}) \operatorname{Pr}(Y<1 / 2) ;$ (d) $\operatorname{Pr}(X \leq 1)$; (e) $\operatorname{Pr}(X=3 Y)$.

Solution.

(a) Since f is the joint p.d.f of X, Y it must be $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) d x d y=1$.

But $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{2} c y^{2} d x d y=\frac{2 c}{3}$. So $c=\frac{3}{2}$.
(b) We want to integrate the function $f(x, y)$ in the region:

Figure 1: Region of integration
So $\operatorname{Pr}(X+Y>2)=\int_{1}^{2} \int_{2-x}^{1} \frac{3 y^{2}}{2} d y d x=\frac{3}{8}$.
(c) For $\operatorname{Pr}\left(Y<\frac{1}{2}\right)$ the region to integrate is

Figure 2: Region of integration
So $\operatorname{Pr}\left(Y<\frac{1}{2}\right)=\int_{0}^{2} \int_{0}^{\frac{1}{2}} \frac{3 y^{2}}{2} d y d x=\frac{1}{8}$.
(d) For $\operatorname{Pr}(X \leq 1)$ the region to integrate is

Figure 3: Region of integration
So $\operatorname{Pr}(X \leq 1)=\int_{0}^{1} \int_{0}^{1} \frac{3 y^{2}}{2} d y d x=\frac{1}{2}$.
(e) The probability that (X, Y) will lie on the line $x=3 y$ is 0 for every continuous joint distribution.

Exercise 2.

Suppose that the joint p.d.f. of X and Y is as follows:

$$
f(x, y)= \begin{cases}2 x e^{-y} & \text { for } 0 \leq x \leq 1 \text { and } 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Are X and Y independent?

Solution.

Since $f(x, y)$ is 0 outside a rectangle and $f(x, y)$ can factorized $f(x, y)=g(x) h(y)$ inside the rectangle for some non-negative functions g, h of x, y respectively $\left(g(x)=2 x\right.$ and $\left.h(y)=e^{-y}\right)$, it follows that X and Y are independent.

Exercise 3.

Suppose that the joint p.d.f. of X and Y is as follows:

$$
f(x, y)= \begin{cases}24 x y & \text { for } x \geq 0, y \geq 0, \text { and } x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Are X and Y independent?

Solution.

Although $f(x, y)$ can be factored as $f(x, y)=g(x) h(y)$ inside the triangle where $f(x, y)>0$, the fact that $f(x, y)>0$ inside a triangle, rather than a rectangle, implies that X and Y cannot be independent.
For example suppose $f(x, y)=g(x) h(y)$. Since $f\left(\frac{1}{3}, \frac{1}{4}\right)=2$ and $f\left(\frac{1}{6}, \frac{3}{4}\right)=3$ it must be $g\left(\frac{1}{3}\right)>0$ and $h\left(\frac{3}{4}\right)>0$. However, since $f\left(\frac{1}{3}, \frac{3}{4}\right)=0$, it must be $g\left(\frac{1}{3}\right)=0$ or $h\left(\frac{3}{4}\right)=0$. But this is a contradiction.

Exercise 4.

Each student in a certain high school was classified according to her year in school (freshman, sophomore, junior, or senior) and according to the number of times that she had visited a certain museum (never, once, or more than once). The proportions of students in the various classifications are given in the following table:

	Never	Once	More than once
Freshmen	0.08	0.10	0.04
Sophomores	0.04	0.10	0.04
Juniors	0.04	0.20	0.09
Seniors	0.02	0.15	0.10

(a) If a student selected at random from the high school is a junior, what is the probability that she has never visited the museum?
(b) If a student selected at random from the high school has visited the museum three times, what is the probability that she is a senior?

Solution.

(a) We have that $\operatorname{Pr}($ Junior $)=0.04+0.2+0.09=0.33$. Therefore,

$$
\operatorname{Pr}(\text { Never } \mid \text { Junior })=\frac{\operatorname{Pr}(\text { Junior }, \text { Never })}{\operatorname{Pr}(\text { junior })}=\frac{0.04}{0.33}=\frac{4}{33}
$$

(b) We classify the student as having visited the museum more than once.

So $\operatorname{Pr}($ More than once $)=0.04+0.04+0.09+0.1=0.27$. Therefore,

$$
\operatorname{Pr}(\text { Senior } \mid \text { More than once })=\frac{\operatorname{Pr}(\text { Senior,More than once })}{\operatorname{Pr}(\text { More than once })}=\frac{0.1}{0.27}=\frac{10}{27}
$$

Exercise 5.

Let Y be the rate (calls per hour) at which calls arrive at a switchboard. Let X be the number of calls during a two-hour period. Suppose that the marginal p.d.f. of Y is

$$
f_{2}(y)= \begin{cases}e^{-y} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

and that the conditional p.f. of X given $Y=y$ is

$$
g_{1}(x \mid y)= \begin{cases}\frac{(2 y)^{x}}{x!} e^{-2 y} & \text { if } x=0,1, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal p.f. of X. (You may use the formula $\int_{0}^{\infty} y^{k} e^{-y} d y=k$!!)
(b) Find the conditional p.d.f. $g_{2}(y \mid 0)$ of Y given $X=0$.
(c) Find the conditional p.d.f. $g_{2}(y \mid 1)$ of Y given $X=1$.
(d) For what values of y is $g_{2}(y \mid 1)>g_{2}(y \mid 0)$? Does this agree with the intuition that the more calls you see, the higher you should think the rate is?

Solution.

(a) The joint p.f/p.d.f of X and Y is the product $f_{2}(y) g_{1}(x \mid y)$.

$$
f(x, y)= \begin{cases}\frac{(2 y)^{x}}{x!} e^{-3 y} & \text { if } y>0, x=0,1, \ldots, \\ 0 & \text { otherwise }\end{cases}
$$

The marginal p.f of X is obtained by integrating over y.

$$
f_{1}(x)=\int_{0}^{\infty} \frac{(2 y)^{x}}{x!} e^{-3 y} d y=\frac{2^{x}}{x!3^{x}} \int_{0}^{\infty}(3 y)^{x} e^{-3 y} d y=\frac{2^{x}}{x!3^{x}} \frac{x!}{3}=\frac{1}{3}\left(\frac{2}{3}\right)^{x}
$$

for $x=0,1, \ldots$
(b) The conditional p.d.f of Y given $X=0$ is the ratio of the joint p.f/p.d.f to $f_{1}(0)$.

$$
g_{2}(y \mid 0)=\frac{(2 y)^{0} \frac{e^{-3 y}}{0!}}{\frac{1}{3}\left(\frac{2}{3}\right)^{0}}=3 e^{-3 y},
$$

for $y>0$.
(c) The conditional p.d.f of Y given $X=1$ is the ratio of the joint p.f/p.d.f to $f_{1}(1)$.

$$
g_{2}(y \mid 1)=\frac{(2 y)^{1} \frac{e^{-3 y}}{1!}}{\frac{1}{3}\left(\frac{2}{3}\right)^{1}}=9 y e^{-3 y}
$$

for $y>0$.
(d) The ratio of the two conditional p.d.f's is

$$
\frac{g_{2}(y \mid 1)}{g_{2}(y \mid 0)}=\frac{9 y e^{-3 y}}{3 e^{-3 y}}=3 y .
$$

The ratio is greater than 1 if $y>\frac{1}{3}$. This corresponds to the intuition that if we observe more calls, then we should think the rate is higher.

Exercise 6.

Suppose that a random variable X can have each of the seven values $-3,-2,-1,0,1,2,3$ with equal probability. Determine the p.f. of $Y=X^{2}-X$.

Solution.

For each possible value of x, we have the following value of $y=x^{2}-x$:

x	y
-3	12
-2	6
-1	2
0	0
1	0
2	2
3	6

Since the probability of each of X is $\frac{1}{7}$, it follows that the p.f $g(y)$ is as follows:

y	$g(y)$
0	$\frac{2}{7}$
2	$\frac{2}{7}$
6	$\frac{2}{7}$
12	$\frac{1}{7}$

Exercise 7.

Suppose that the p.d.f. of X is as follows:

$$
f(x)= \begin{cases}e^{-x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Determine the p.d.f. of $Y=X^{1 / 2}$.

Solution.

First we will find the c.d.f of Y, $G(y)$.

$$
G(y)=P(Y \leq y)=P\left(X^{1 / 2}<y\right)=P\left(X \leq y^{2}\right)=\int_{0}^{y^{2}} e^{-x} d x=1-e^{-y^{2}}
$$

So the p.d.f of Y is $g(y)=\frac{d G(y)}{d y}=2 y e^{-y^{2}}$.
Or we can use the theorem:
As x varies over all positive values, y also varies over all positive values and $x=y^{2}$. So

$$
g(y)=f\left(y^{2}\right) \frac{d x}{d y}=2 y e^{-y^{2}}
$$

Exercise 8.

Let X and Y be random variables for which the joint p.d.f. is as follows:

$$
f(x, y)= \begin{cases}2(x+y) & \text { for } 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the p.d.f. of $Z=X+Y$.

Solution.

By theorem the p.d.f of $Z=X+Y$ is given by $g(y)=\int_{-\infty}^{\infty} f(z-t, t) d t$ for $-\infty<z<\infty$. The integrated is positive only for $0 \leq z-t \leq t \leq 1$ and $0 \leq z \leq 2$.

If $0 \leq z \leq 1$ then $\frac{z}{2} \leq t \leq z$ and we have

$$
g(z)=\int_{\frac{z}{2}}^{z} 2 z d t=z^{2}
$$

and if $1<z \leq 2$ then $\frac{z}{2} \leq t \leq 1$ and we have

$$
g(z)=\int_{\frac{z}{2}}^{1} 2 z d t=z(2-z)
$$

Exercise 9.

Suppose that X_{1} and X_{2} are i.i.d. random variables and that the p.d.f. of each of them is as follows:

$$
f(x)= \begin{cases}e^{-x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the p.d.f. of $Y=X_{1}-X_{2}$.

Solution.

Let $Z=-X_{2}$. Then the p.d.f of Z is

$$
f_{2}(z)= \begin{cases}e^{z} & \text { for } z<0 \\ 0 & \text { for } z \geq 0\end{cases}
$$

Since X_{1} and Z are independent, the joint p.d.f of X_{1} and Z is

$$
f\left(x_{1}, z\right)= \begin{cases}e^{-(x-z)} & \text { for } x>0, z<0 \\ 0 & \text { otherwise }\end{cases}
$$

It now follows from the previous exercise that the p.d.f of $Y=X_{1}-X_{2}=X_{1}+Z$ is

$$
g(y)=\int_{-\infty}^{\infty} f(y-z, z) d z
$$

The integrand is positive only for $y-z>0$ and $z<0$. If $y \leq 0$,

$$
g(y)=\int_{-\infty}^{y} e^{-(y-2 z)} d z=\frac{1}{2} e^{y}
$$

If $y>0$,

$$
g(y)=\int_{-\infty}^{0} e^{-(y-2 z)} d z=\frac{1}{2} e^{-y}
$$

Exercise 10.

Suppose that a point is chosen at random on a stick of unit length and that the stick is broken into two pieces at that point. Find the expected value of the length of the longer piece.

Solution.

If X denotes the point at which the stick is broken, then $X \sim U[0,1]$. If Y denotes the lenght of the longer piece, then $Y=\max \{X, 1-X\}$. Therefore,

$$
E(Y)=\int_{0}^{1} \max \{X, 1-X\} d x=\int_{0}^{1 / 2}(1-x) d x+\int_{1 / 2}^{1} x d x=\frac{3}{4}
$$

Exercise 11.

Suppose that a particle is released at the origin of the $x y$-plane and travels into the half-plane where $x>0$. Suppose that the particle travels in a straight line and that the angle between the positive half of the x-axis and this line is α, which can be either positive or negative. Suppose, finally, that the angle α has the uniform distribution on the interval $[-\pi / 2, \pi / 2]$. Let Y be the ordinate of the point at which the particle hits the vertical line $x=1$. Show that the distribution of Y is a Cauchy distribution.

Solution.

Since $a \sim U\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the p.d.f of a is

$$
f(a)= \begin{cases}\frac{1}{\pi} & \text { for }-\frac{\pi}{2}<a<-\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Also, $Y=\tan (a)$. Therefore, the inverse transformation is $a=\tan ^{-1} Y$ and $\frac{d a}{d y}=\frac{1}{1+y^{2}}$. As a varies over the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, Y varies over the entire real line. Therefore, for $-\infty<y<\infty$, the p.d.f of Y is

$$
g(y)=f\left(\tan ^{-1} y\right) \frac{1}{1+y^{2}}=\frac{1}{\pi\left(1+y^{2}\right)}
$$

So Y is a Cauchy distribution.

Exercise 12.

Suppose that a class contains 10 boys and 15 girls, and suppose that eight students are to be selected at random from the class without replacement. Let X denote the number of boys that are selected, and let Y denote the number of girls that are selected. Find $E(X-Y)$.

Solution.

We observe that $Y=8-X$. So $E(X-Y)=E(X-(8-X))=E(2 X-8)$.
Also $X \sim$ Hypergeometric $(10,10+5,8)$ and $E(X)=8 \cdot \frac{10}{25}=\frac{16}{5}$. So $E(X-Y)=-\frac{8}{5}$.

Exercise 13.

Suppose that one word is selected at random from the sentence THE GIRL. PUT ON HER BEAUTIFUL RED HAT. If X denotes the number of letters in the word that is selected, what is the value of $\operatorname{Var}(X)$?

Solution.

X takes the values $\{2,3,4,9\}$ with probabilities $\left\{\frac{1}{8}, \frac{5}{8}, \frac{1}{8}, \frac{1}{8}\right\}$ respectively. So

$$
\begin{gathered}
E(X)=2 \cdot \frac{1}{8}+3 \cdot \frac{5}{8}+4 \cdot \frac{1}{8}+9 \cdot \frac{1}{8}=\frac{15}{4} \\
E\left(X^{2}\right)=2^{2} \cdot \frac{1}{8}+3^{2} \cdot \frac{5}{8}+4^{2} \cdot \frac{1}{8}+9^{2} \cdot \frac{1}{8}=\frac{73}{4}
\end{gathered}
$$

Therefore

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{67}{16}
$$

Exercise 14.

Suppose that X is a random variable for which $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. Show that $E[X(X-1)]=$ $\mu(\mu-1)+\sigma^{2}$.

Solution.

$E(X(X-1))=E\left(X^{2}-X\right)=E\left(X^{2}\right)-E(X)=\operatorname{Var}(X)+[E(X)]^{2}-E(X)=\sigma^{2}+\mu^{2}-\mu=\sigma^{2}+\mu(\mu-1)$

Exercise 15.

Suppose that X and Y are independent random variables whose variances exist and such that $E(X)=E(Y)$. Show that

$$
E\left[(X-Y)^{2}\right]=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Solution.

Since $E(X)=E(Y)$ we have that $E(X-Y)=0$. Therefore

$$
E\left[(X-Y)^{2}\right]=\operatorname{Var}(X-Y)=\operatorname{Var}(X+(-Y))=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

because X and Y are independent.

Exercise 16.

For all random variables X and Y and all constants a, b, c, and d, show that

$$
\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)
$$

Solution.

We have that $E(a X+b)=a \mu_{X}+b$ and $E(c Y+d)=c \mu_{Y}+d$. Therefore,
$\operatorname{Cov}(a X+b, c Y+d)=E\left[\left(a X+b-a \mu_{X}-b\right)\left(c Y+d-c \mu_{Y}-d\right)\right]=E\left[a c\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=a c \operatorname{Cov}(X, Y)$

Exercise 17.

Let X, Y, and Z be three random variables such that $\operatorname{Cov}(X, Z)$ and $\operatorname{Cov}(Y, Z)$ exist, and let a, b, and c be arbitrary given constants. Show that

$$
\operatorname{Cov}(a X+b Y+c, Z)=a \operatorname{Cov}(X, Z)+b \operatorname{Cov}(Y, Z)
$$

Solution.

We have that $E(a X+b Y+c)=a \mu_{X}+b \mu_{Y}+c$. Therefore $\operatorname{Cov}(a X+b Y+c, Z)=$ $E\left[\left(a X+b Y+c-a \mu_{X}-b \mu_{Y}-c\right)\left(Z-\mu_{Z}\right)\right]=\ldots=a \operatorname{Cov}(X, Z)+b \operatorname{Cov}(Y, Z)$

