Parametric Statistics
 Conditional Expectation, Moments

Sofia Triantafillou
sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

October 16, 2023

Last Time

- Expectation is a summary of a distribution.
- We can compute the expectation of a function of an RV using LOTUS.
- Properties of expectation.
- Variance is a summary of how spread out a distribution is.
- Covariance describes how much two variables vary together.
- Correlation is covariance without scale.

Lecture Summary

4.7 Conditional Expectations
4.4 Moments

Conditional Expectation

Let X and Y be random variables such that the mean of Y exists and is finite. The conditional expectation (or conditional mean) of Y given $X=x$ is denoted by $E(Y \mid x)$ and is defined to be the expectation of the conditional distribution of Y given $X=x$. For example, if Y has a continuous conditional distribution given $X=x$ with conditional p.d.f. $g_{2}(y \mid x)$, then

$$
E(Y \mid x)=\int_{-\infty}^{\infty} y g_{2}(y \mid x) d y
$$

Similarly, if Y has a discrete conditional distribution given $X=x$ with conditional p.f. $g_{2}(y \mid x)$, then

$$
E(Y \mid x)=\sum_{\text {All } y} y g_{2}(y \mid x)
$$

Conditional Expectation

- Conditional distributions are distributions, so they have expectations and variances.
- $E(Y \mid X=x)=\sum_{y} y P(y \mid X=x)$ is the conditional expectation of Y if you know $X=x$ (a number).
- $E(Y \mid X)=h(X)$ is a function of X. For every possible value x of $X, E(Y \mid X)$ takes the value $E(Y \mid X=x)$. So $E(Y \mid X)$ is a random variable.
- Law of total expectation/Law of iterated expectations:

$$
E[E(Y \mid X)]=E(Y)
$$

Conditional Variance

Definition

For every given value x, let $\operatorname{Var}(Y \mid x)$ denote the variance of the conditional distribution of Y given that $X=x$. That is,

$$
\operatorname{Var}(Y \mid x)=E\left\{[Y-E(Y \mid x)]^{2} \mid x\right\}
$$

We call $\operatorname{Var}(Y \mid x)$ the conditional variance of Y given $X=x$.
Law of total variance
If X and Y are arbitrary random variables for which the necessary expectations and variances exist, then

$$
\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}[E(Y \mid X)]
$$

We call $\operatorname{Var}(Y \mid x)$ the conditional variance of Y given $X=x$.

Using the laws of total expectation and variance

- $Y \sim$ Bernoulli(0.5).
- $X \mid Y=0 \sim$ Uniform $([0,1])$.
- $X \mid Y=1 \sim \operatorname{Uniform}([1,3])$
- Find $E(X \mid Y), \operatorname{Var}(X \mid Y)$.
- Find $E(X), \operatorname{Var}(X)$.

Moments and Central Moments

Definition (Moments and Central Moments)

Let X be a random variable and k be a positive integer. The expectation $E\left(X^{k}\right)$ is the k-th moment of X.
The expectation $E\left[(X-E(X))^{k}\right]$ is the k-th central moment of X.

- The first moment is the mean: $\mu=E\left(X^{1}\right)$.
- The first central moment is zero:

$$
E\left[(X-E(X))^{1}\right]=E(X-\mu)=E(X)-E(X)=0
$$

- The second central moment is the variance:

$$
E\left[(X-E(X))^{2}\right]=\operatorname{Var}(X)
$$

Moments and Central Moments

- The k th moment exists if and only if $E\left(|X|^{k}\right)<\infty$.
- If the random variable X is bounded $(\operatorname{Pr}(a \leq X \leq b)=1)$, then all moments of X must necessarily exist.
- It is possible, however, that all moments of X exist even though X is not bounded.
- If $E\left(|X|^{k}\right)<\infty$ for some positive integer k, then $E\left(|X|^{j}\right)<\infty$ for every positive integer j such that $j<k$.
- If the distribution of X is symmetric with respect to its mean μ, and if the central moment $E\left[(X-\mu)^{k}\right]$ exists for a given odd integer k, then the value of $E\left[(X-\mu)^{k}\right]$ will be 0 .

Skewness

Let X be a random variable with mean μ, standard deviation σ, and finite third moment. The skewness of X is defined to be $E\left[(X-\mu)^{3}\right] / \sigma^{3}$.

- The reason for dividing the third central moment by σ^{3} is to make the skewness measure only the lack of symmetry rather than the spread of the distribution.

Skewness

Let X be a random variable with mean μ, standard deviation σ, and finite third moment. The skewness of X is defined to be $E\left[(X-\mu)^{3}\right] / \sigma^{3}$.

- The reason for dividing the third central moment by σ^{3} is to make the skewness measure only the lack of symmetry rather than the spread of the distribution.
- Let's compute the skewness of the Bernoulli distribution.
- with $p=0.5$
- with $p=0.1$

Moment Generating Functions

Definition

Let X be a random variable. The function

$$
\psi(t)=E\left(e^{t X}\right), t \in R
$$

is called the moment generating function (m.g.f.) of X.

Let X be a random variables whose m.g.f. $\psi(t)$ is finite for t in an open interval around zero. Then the $n-t h$ moment of X is finite, for $n=1,2, \ldots$, and

$$
E\left(X^{n}\right)=\left.\frac{d^{n} \psi(t)}{d t^{n}}\right|_{t=0}
$$

Properties of Moment Generating Functions

- $\psi(a X+b)=e^{b t} \psi_{X}(a t)$.
- Let $Y=\sum_{i=1}^{n} X_{i}$ where X_{1}, \ldots, X_{n} are independent random variables with m.g.f $\psi_{i}(t)$ for $i=1, \ldots, n$. Then

$$
\psi_{Y}(t)=\prod_{i=1}^{n} \psi_{i}(t)
$$

- Let X and Y be two random variables with m.g.f.'s $\psi_{X}(t)$ and $\psi_{Y}(t)$. If the m.g.f.'s are finite and $\psi_{X}(t)=\psi_{Y}(t)$ for all values of t in an open interval around zero, then X and Y have the same distribution.

Finding the p.f.'s for sums of random variables

- Find the mgf of $\operatorname{Binomial}(\mathrm{n}, \mathrm{p})$.

Sum of Binomials is a Binomial
If X_{1} and X_{2} are independent random variables, and if X_{i} has the binomial distribution with parameters n_{i} and $p(i=1,2)$, then $X_{1}+X_{2}$ has the binomial distribution with parameters $n_{1}+n_{2}$ and p.

Mean and Median

Median

Let X be a random variable. Every number m with the following property is called a median of the distribution of X :

$$
\operatorname{Pr}(X \leq m) \geq 1 / 2 \quad \text { and } \quad \operatorname{Pr}(X \geq m) \geq 1 / 2 .
$$

Mean Squared Error/M.S.E
The number $E\left[(X-d)^{2}\right]$ is called the mean squared error (M.S.E.) of the prediction d.

Mean Absolute Error/M.A.E.
The number $E(|X-d|)$ is called the mean absolute error (M.A.E.) of the prediction d.

Mean and Median

Mean minimizes M.S.E.
Let X be a random variable with finite variance σ^{2}, and let $\mu=$ $E(X)$. For every number d,

$$
E\left[(X-\mu)^{2}\right] \leq E\left[(X-d)^{2}\right]
$$

Median minimizes M.A.E.
Let X be a random variable with finite mean, and let m be a median of the distribution of X. For every number d,

$$
E(|X-m|) \leq E(|X-d|)
$$

Equality holds if and only if d is also a median of the distribution of X.

Recap

- Conditional Expectation, Conditional Variance are functions of the conditioning variable.
- Law of total expectation/law of total variance can help us compute variances and expectations of complex functions.
- The means of powers X^{k} of an RV X are called moments of X.
- They can help us derive distributions of sums of independent random variables and prove limiting properties of distributions.

