Parametric Statistics-Recitation 2 (Solutions)

Exercise 1.

Suppose that a random variable X has a discrete distribution with the following p.f.:

$$
f(x)= \begin{cases}\frac{c}{2^{x}} & x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Find the value of the constant c.

Solution

It must be $\sum_{x=0}^{\infty} f(x)=1$. So $\sum_{x=0}^{\infty} \frac{c}{2^{x}}=1$. That means

$$
c=\frac{1}{\sum_{x=0}^{\infty} 2^{-x}}
$$

But

$$
\sum_{x=0}^{\infty} 2^{-x}=\frac{1}{1-\frac{1}{2}}=2
$$

And so $c=\frac{1}{2}$.

Exercise 2.

A civil engineer is studying a left-turn lane that is long enough to hold seven cars. Let X be the number of cars in the lane at the end of a randomly chosen red light. The engineer believes that the probability that $X=x$ is proportional to $(x+1)(8-x)$ for $x=0, \ldots, 7$ (the possible values of X).
(a) Find the p.f. of X.
(b) Find the probability that X will be at least 5 .

Solution

(a) The p.f. of X is $f(x)=c(x+1)(8-x)$ for $x=0, \ldots, 7$. It must be $\sum_{x=0}^{7} f(x)=1$. Also

$$
\sum_{x=0}^{7}(x+1)(8-x)=120
$$

That means $c=\frac{1}{120}$ and $f(x)=\frac{(x+1)(8-x)}{120}$.
(b) $P(X \geq 5)=\sum_{x=5}^{7} \frac{(x+1)(8-x)}{120}=\frac{1}{3}$

Exercise 3.

Suppose that the p.d.f. of a random variable X is as follows:

$$
f(x)= \begin{cases}c x^{2} & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c and sketch the p.d.f.
(b) Find the value of $\operatorname{Pr}\left(X>\frac{3}{2}\right)$.

Solution

(a) Since $f(x)$ is the p.d.f of X we know that $\int_{-\infty}^{\infty} f(x) d x=1$. That means

$$
\int_{1}^{2} c x^{2} d x=1
$$

and so $c=\frac{3}{7}$.

Figure 1: P.D.F of X
(b) $\operatorname{Pr}\left(X>\frac{3}{2}\right)=\int_{\frac{3}{2}}^{2} \frac{3 x^{2}}{7} d x=\frac{37}{56}$

Exercise 4.

Suppose that the p.d.f. of a random variable X is as follows:

$$
f(x)= \begin{cases}c e^{-2 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c and sketch the p.d.f.
(b) Find the value of $\operatorname{Pr}(1<X<2)$.

Solution

(a) Since $f(x)$ is the p.d.f of X we know that $\int_{-\infty}^{\infty} f(x) d x=1$. That means

$$
\int_{0}^{\infty} c e^{-2 x} d x=1
$$

and so $c=2$.

Figure 2: P.D.F of X
(b) $\operatorname{Pr}(1<X<2)=\int_{1}^{2} 2 e^{-2 x} d x=e^{-2}-e^{-4}$.

Exercise 5.

Suppose that the c.d.f. F of a random variable X is as sketched below. Find each of the following probabilities:

a. $\operatorname{Pr}(X=-1)$
b. $\operatorname{Pr}(X<0)$
c. $\operatorname{Pr}(X \leq 0)$
d. $\operatorname{Pr}(X=1)$
e. $\operatorname{Pr}(0<X \leq 3)$
f. $\operatorname{Pr}(0<X<3)$
g. $\operatorname{Pr}(0 \leq X \leq 3)$
h. $\operatorname{Pr}(1<X \leq 2)$
i. $\operatorname{Pr}(1 \leq X \leq 2)$
j. $\operatorname{Pr}(X>5)$
k. $\operatorname{Pr}(X \geq 5)$
I. $\operatorname{Pr}(3 \leq X \leq 4)$

Figure 3: C.D.F of X

Solution

(a) $F(-1)-F\left(-1^{-}\right)=0.1$
(b) $F\left(0^{-}\right)=0.1$
(c) $F(0)=0.2$
(d) $F(1)-F\left(1^{-}\right)=0$
(e) $F(3)-F(0)=0.6$
(f) $F\left(3^{-}\right)-F(0)=0.4$
(g) $F(3)-F\left(0^{-}\right)=0.7$
(h) $F(2)-F(1)=0$
(i) $F(2)-F\left(1^{-}\right)=0$
(j) $1-F(5)=0$
(k) $1-F\left(5^{-}\right)=0$
(I) $F(4)-F\left(3^{-}\right)=0.2$

Exercise 6.

Suppose that the c.d.f. of a random variable X is as follows:

$$
F(x)= \begin{cases}e^{x-3} & x \leq 3 \\ 1 & x>3\end{cases}
$$

Find and sketch the p.d.f. of X .

Solution

We know that

$$
f(x)=\frac{d F(x)}{d x}= \begin{cases}e^{x-3} & x<3 \\ 0 & x>3\end{cases}
$$

The value $x=3$ is irrelevant.

Figure 4: P.D.F of X

Exercise 7.

Suppose that X has the p.d.f.

$$
f(x)= \begin{cases}2 x & 0<x<1 \\ 0 & \text { otherwuise }\end{cases}
$$

Find and sketch the c.d.f. or X.

Solution

Since $f(x)=0$ for $x \leq 0$ and for $x \geq 1$, the c.d.f $F(x)$ will take the value 0 for $x \leq 0$ and the value 1 for $x \geq 1$. Between 0 and 1, we compute $F(x)$ by integrating the p.d.f. So for $0<x<1$ we have that

$$
F(x)=\int_{0}^{x} 2 y d y=x^{2}
$$

Figure 5: C.D.F of X

