Parametric Statistics
 Expectation and Variance

Sofia Triantafillou
sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

October 11, 2023

Last time

- Two random variables have a bivariate joint distribution.
- More than two RVs have a multivariate joint distribution.
- We can compute marginal, conditional distributions from the joint pf.
- Independence is defined for RVs.
- Functions of RVs are RVs.

Lecture Summary

4.1 Expectations
4.2 Properties of Expectations
4.3 Variance
4.6 Covariance and Correlation

The Binomial Distribution

Example.

- Consider a machine that produces a defective item with probability $p(0<p<1)$ and a nondefective item with probability $1-p$.
- Each item is independent of each other.
- Let 0 denote a non-defective item, and 1 denote a defective item.
- What is the probability of x defective items in n items?
- Example: $P(X=2)$ if $n=4$.

Binomial Distribution

We say that X is a binomial RV.

$$
\operatorname{Pr}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Therefore, the p.f. of X will be as follows:

$$
f(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { for } x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

Expectation

Expectation of a discrete RV

The expected value or mean or first moment of X is defined to be

$$
E(X)=\sum_{x} x f(x)
$$

assuming that the sum is well-defined.

- We can think of the expectation as the average of a very large number of independent draws from the distribution (i.i.d. draws).
- Example: $X \sim \operatorname{Bernoulli}(p) . E(X)$?
- Example: Let X be the number of heads in 3 tosses. $E(X)$?

Expectation

Expectation of a continuous RV
The expected value or mean or first moment of X is defined to be

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- Example: $X \sim$ Uniform $[a, b] . E(X)$?

Expectation of a function of a random variable

Sometimes we are interested in the expectation of a function of a random variable $Y=r(X)$. One way to find the expectation of this random variable:

- Find its pmf $f(y)$
- Compute $\sum_{y} y f(y)$

Example
You play a game with three outcomes, $X \in\{3,4,6\}$ with

$$
f(X=3)=0.4, f(X=4)=0.5, f(X=6)=0.1
$$

Every time you play, you get $Y=X^{2}$. What are your expected gains?

Law Of The Unconscious Statistician

Let X be a random variable, and let r be a real-valued function of a real variable. If X has a continuous distribution, then

$$
E(r(X))=\int_{-\infty}^{\infty} r(x) f(x) d x
$$

if the mean exists. If X has a discrete distribution, then

$$
E(r(X))=\sum_{\text {All } x} r(x) f(x)
$$

if the mean exists.

Law Of the Unconscious Statistician II

Suppose that X_{1}, \ldots, X_{n} are random variables with the joint p.d.f. $f\left(x_{1}, \ldots, x_{n}\right)$. Let r be a real-valued function of n real variables, and suppose that $Y=r\left(X_{1}, \ldots, X_{n}\right)$. Then $E(Y)$ can be determined directly from the relation

$$
E(Y)=\int \underset{R^{n}}{ } \int r\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

if the mean exists. Similarly, if X_{1}, \ldots, X_{n} have a discrete joint distribution with p.f. $f\left(x_{1}, \ldots, x_{n}\right)$, the mean of $Y=r\left(X_{1}, \ldots, X_{n}\right)$ is

$$
E(Y)=\sum_{\text {All }}^{x_{1}, \ldots, x_{n}} \mid r\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right)
$$

if the mean exists.

Properties of Expectation

- $E(a)=$
- $E(a X)=$
- $E(a X+b)=$

Properties of Expectation

- $E(a)=a$
- $E(a X)=a E(X)$
- $E(a X+b)=a E(X)+b$
- $E(g(X)) \neq g(E(X))$ in most cases!
- Jensen's Inequality. Let g be a convex function, and let X be an RV with finite mean. Then $E[g(X)] \geq g(E(X))$.

Properties of Expectation

Linearity of Expectations

If X_{1}, \ldots, X_{n} are n random variables such that each expectation $E\left(X_{i}\right)$ is finite $(i=1, \ldots, n)$, then

$$
E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)
$$

Example: Find the expectation of the Binomial (N, p)
Expectation of a Product of Independent Random Variables If X_{1}, \ldots, X_{n} are n independent random variables such that each expectation $E\left(X_{i}\right)$ is finite $(i=1, \ldots, n)$, then

$$
E\left(\prod_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} E\left(X_{i}\right)
$$

Example

- If $X_{1}, X_{2}, \ldots X_{n}$ are i.i.d. Bernoulli (p) random variables then $Y=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$

$$
E(Y)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=n p
$$

Variance of a random variable

Sometimes we are also interested in quantifying how far from the mean

Definition (Variance/Standard Deviation)

Let X be a random variable with finite mean $\mu=E(X)$. The variance of X, denoted by $\operatorname{Var}(X)$, is defined as follows:

$$
\operatorname{Var}(X)==E\left[(X-E(X))^{2}\right]=E\left[(X-\mu)^{2}\right]
$$

If X has infinite mean or if the mean of X does not exist, we say that $\operatorname{Var}(X)$ does not exist. The standard deviation of X is

$$
\sigma_{x}=\sqrt{\operatorname{Var}(X)}
$$

if the variance exists.

- Let $X \sim \operatorname{Bernoulli}(p) . \operatorname{Var}(X)=$?
- Let X be the number of heads in three tosses. $\operatorname{Var}(X)=$?

Alternative Method for Computing the Variance

For every random variable $X, \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$. Proof Let $E(X)=\mu$. Then

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left(X^{2}-2 \mu X+\mu^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu E(X)+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2} .
\end{aligned}
$$

Properties of Variances

- $\operatorname{Var}(a)=$
- $\operatorname{Var}(a X+b)=$

Properties of Variances

- $\operatorname{Var}(a)=0$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Properties of Variances

- $\operatorname{Var}(a)=0$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Linearity of variances for independent random variables.
Let X_{1}, \ldots, X_{n} be a set of independent random variables. Then

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)
$$

Let's prove it for the case of two discrete variables.

Covariance

Let X and Y be random variables having finite means. Let $E(X)=\mu_{X}$ and $E(Y)=\mu_{Y}$ The covariance of X and Y, which is denoted by $\operatorname{Cov}(X, Y)$, is defined as

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

if the expectation exists.

- For all random variables X and Y such that $\sigma_{X}^{2}<\infty$ and $\sigma_{Y}^{2}<\infty$,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

- If X, Y are independent, then $\operatorname{Cov}(X, Y)=0$.

Correlation and Inequalities

Correlation
Covariance without dimensions

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Schwartz inequality

$$
\left.[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)\right]
$$

Cauchy - Schwartz inequality

$$
\begin{gathered}
{[\operatorname{Cov}(X, Y)]^{2} \leq \sigma_{X}^{2} \sigma_{Y}^{2}} \\
-1 \leq \rho(X, Y) \leq 1
\end{gathered}
$$

Interquantile range

IQR

Let X be a random variable with quantile function $F^{-1}(p)$ for $0<$ $p<1$. The interquartile range $(I Q R)$ is defined to be $F^{-1}(0.75)-$ $F^{-1}(0.25)$. In words, the IQR is the length of the interval that contains the middle half of the distribution.

Recap

- Expectation is a summary of a distribution.
- We can compute the expectation of a function of an RV using LOTUS.
- Properties of expectation.
- Variance is a summary of how spread out a distribution is.
- Covariance describes how much two variables vary together.
- Correlation is covariance without scale.

