Parametric Statistics Joint Distributions

Sofia Triantafillou sof.triantafillou@gmail.com

University of Crete
Department of Mathematics and Applied Mathematics

October 9, 2023

Recap

- Random variables are functions from the sample space to the real line.
- Random variables can be discrete or continuous.
- Discrete RVs have probability mass functions.
- Continuous RVs have probability density functions.
- All RVs can be described with the cumulative distribution function.
- The quantile function is the inverse of the CDF, for continuous distributions.

Today

3.4 Bivariate Distributions
3.5 Marginal Distributions
3.6 Conditional Distributions
3.7 Multivariate Distributions
3.8 Functions of a Random Variable

Joint Probability Mass Function

$$
\begin{aligned}
& y \uparrow \\
& \begin{array}{l}
y \\
3 \\
2 \\
2 \\
\hline 1 / 20 \\
\hline 2 / 20 \\
\hline
\end{array} 2 / 2 / 20 \\
& \hline \\
& \hline
\end{aligned}
$$

$\sum_{\operatorname{all}(x, y)} f(x, y)=1$ (still a probability mass function)

Joint Probability Mass Function

$$
\begin{aligned}
& y \\
& 3 \\
& 3 \\
& 2 \\
& 2 \\
& \hline 1 / 20 \\
& \hline 2 / 20 \\
& \hline
\end{aligned}
$$

$$
\sum_{\text {all }(x, y)} f(x, y)=1 \text { (still a probability mass function) }
$$

What is $P(X \geq 2, Y \geq 2)$?

Marginal Probability Functions

y^{4}				
3	1/20	2/20	1/20	1/20
2	2/20	4/20	$1 / 20$	$1 / 20$
1		2/20	4/20	
0	1/20			
	0	1	2	3

Marginal Distribution

If X and Y have a discrete joint distribution for which the joint p.f. is f, then the marginal p.f. f_{1} of X is

$$
f_{1}(x)=\sum_{\text {All } y} f(x, y)
$$

Similarly, the marginal p.f. f_{2} of Y is $f_{2}(y)=\sum_{\text {All } x} f(x, y)$.

Conditional Probability Mass Functions

Conditional Probability: $P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}$

$$
\begin{gathered}
\text { e.g., } P(x \mid y=2)=\{2 / 8,4 / 8,1 / 8,1 / 8\} \\
\sum_{x} P(x \mid y)=1 \text { (still a probability mass function) }
\end{gathered}
$$

Joint Probability Density Function

Joint p.d.f.:

$$
f(x, y) \geq 0, \text { everywhere }
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

$$
\operatorname{Pr}[(X, Y) \in C]=\int_{C} \int f(x, y) d x d y
$$

Marginal PDFs

If X and Y have a continuous joint distribution with joint p.d.f. f, then the marginal p.d.f. f_{1} of X is

$$
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y \text { for }-\infty<x<\infty
$$

Similarly, the marginal p.d.f. f_{2} of Y is

$$
f_{2}(y)=\int_{-\infty}^{\infty} f(x, y) d x \text { for }-\infty<y<\infty
$$

Marginal PDFs

$$
f(x, y)= \begin{cases}\frac{21}{4} x^{2} y & \text { for } x^{2} \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the marginal pdfs $f_{1}(x), f_{2}(y)$.

Conditional PDFs

Let X and Y have a continuous joint distribution with joint p.d.f. f and respective marginals f_{1} and f_{2}. Let y be a value such that $f_{2}(y)>0$. Then the conditional p.d.f. g_{1} of X given that $Y=y$ is defined as follows:

$$
g_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)} \text { for }-\infty<x<\infty
$$

For values of y such that $f_{2}(y)=0$, we are free to define $g_{1}(x \mid y)$ however we wish, so long as $g_{1}(x \mid y)$ is a p.d.f. as a function of x.

Conditional PDFs

Example

A manufacturing process consists of two stages. The first stage takes Y minutes, and the whole process takes X minutes (which includes the first Y minutes). Suppose that X and Y have a joint continuous distribution with joint p.d.f.

$$
f(x, y)= \begin{cases}e^{-x} & \text { for } 0 \leq y \leq x<\infty \\ 0 & \text { otherwise }\end{cases}
$$

After we learn how much time Y that the first stage takes, we want to update our distribution for the total time X. In other words, we would like to be able to compute a conditional distribution for X given $Y=y$. We cannot argue the same way as we did with discrete joint distributions, because $\{Y=y\}$ is an event with probability 0 for all y.

Conditional PDFs

Y is the time that the first stage of a process takes, while X is the total time of the two stages. We want to calculate the conditional p.d.f. of X given Y. We can calculate the marginal p.d.f. of Y as follows: For each y, the possible values of X are all $x \geq y$, so for each $y>0$,

$$
f_{2}(y)=\int_{y}^{\infty} e^{-x} d x=
$$

and $f_{2}(y)=0$ for $y<0$. For each $y \geq 0$, the conditional p.d.f. of X given $Y=y$ is then

$$
g_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=
$$

Conditional PDFs

Y is the time that the first stage of a process takes, while X is the total time of the two stages. We want to calculate the conditional p.d.f. of X given Y. We can calculate the marginal p.d.f. of Y as follows: For each y, the possible values of X are all $x \geq y$, so for each $y>0$,

$$
f_{2}(y)=\int_{y}^{\infty} e^{-x} d x=e^{-y}
$$

and $f_{2}(y)=0$ for $y<0$. For each $y \geq 0$, the conditional p.d.f. of X given $Y=y$ is then

$$
g_{1}(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=\frac{e^{-x}}{e^{-y}}=e^{y-x}, \text { for } x \geq y
$$

Conditional PDFs

Note: $g_{1}(x \mid y)$ is a limit:

$$
g_{1}(x \mid y)=\lim _{\epsilon \rightarrow 0} \frac{\partial}{\partial x} \mathrm{P}(X \leq x \mid y-\epsilon<Y \leq y+\epsilon)
$$

Joint/Conditional/Marginal PDFs

Independence of Random Variables

Definition (Independent Random Variables)

Two random variables are independent if for every two sets A and B in R the events $\{s: X(s) \in A\}$ and $\{s: Y(s) \in B\}$ are independent.

Theorem

Suppose that X and Y are random variables that have a joint p.f., p.d.f., or p.f./p.d.f. f. Two random variables X and Y are independent if and only if the following factorization is satisfied for all real numbers x and y :

$$
f(x, y)=f_{1}(x) f_{2}(y)
$$

Random Samples/i.i.d./Sample Size.

- Let f be a distribution.
- n random variables X_{1}, \ldots, X_{n} form a random sample from this distribution if these random variables are independent and the marginal p.f. or p.d.f. of each of them is f.
- AKA Independent and Identically Distributed (i.i.d.) random variables
- n is the sample size.
- $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$:

$$
g\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) .
$$

Conditional Independence

- Assume you know that $X<2$ and $Y \geq 2$
- Are X and Y independent in this new universe?

Multiplication Rule for RVs.

$$
f(x, y)=g_{1}(x \mid y) f_{2}(y)=f_{1}(x) g_{2}(y \mid x)
$$

Law of Total Probability for RVs.
Discrete:

$$
f_{1}(x)=\sum_{y} g_{1}(x \mid y) f_{2}(y)
$$

Continuous:

$$
f_{1}(x)=\int_{-\infty}^{\infty} g_{1}(x \mid y) f_{2}(y) d y
$$

Bayes Rule for RVs.

$$
g_{2}(y \mid x)=\frac{g_{1}(x \mid y) f_{2}(y)}{f_{1}(x)}
$$

Functions of Random Variables are Random Variables

Function of a Discrete Random Variable

$$
g(y)=\operatorname{Pr}(Y=y)=\operatorname{Pr}[r(X)=y]=\sum_{x: r(x)=y} f(x) .
$$

Example

$$
f(x)=\frac{x^{2}}{a}, \quad x \in\{-3,-2,-1,1,2,3\}
$$

- Find a.
- Find the pmf of X
- Find the pmf of $Z=X^{2}$

Mixed Distributions

Joint p.f./p.d.f
Let X and Y be random variables such that X is discrete and Y is continuous. Suppose that there is a function $f(x, y)$ defined on the $x y$-plane such that, for every pair A and B of subsets of the real numbers,

$$
\operatorname{Pr}(X \in A \text { and } Y \in B)=\int_{B} \sum_{x \in A} f(x, y) d y
$$

if the integral exists. Then the function f is called the joint p.f. /p.d.f. of X and Y.

Joint (Cumulative) Distribution Function/c.d.f.
The joint distribution function or joint cumulative distribution function (joint c.d.f.) of two random variables X and Y is defined as the function F such that for all values of x and $y(-\infty<x<\infty$ and $-\infty<y<\infty)$

$$
F(x, y)=\operatorname{Pr}(X \leq x \text { and } Y \leq y)
$$

Practice

A fair coin is tossed three times. Let

- X: number of heads on the first toss
- Y: total number of heads
- Find the joint distribution of X, Y.
- Find the marginal distributions of X and Y.
- Find the conditional distribution of $Y \mid X$
- Are X and Y independent?

Recap

- Two random variables have a bivariate joint distribution.
- More than two RVs have a multivariate joint distribution.
- We can compute marginal, conditional distributions from the joint pf.
- Independence is defined for RVs.
- Functions of RVs are RVs.

