Recitation 2

1. Suppose that a random variable X has a discrete distribution with the following p.f.:

$$
f(x)= \begin{cases}\frac{c}{2^{x}} & \text { for } x=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Find the value of the constant c.
2. A civil engineer is studying a left-turn lane that is long enough to hold seven cars. Let X be the number of cars in the lane at the end of a randomly chosen red light. The engineer believes that the probability that $X=x$ is proportional to $(x+1)(8-x)$ for $x=0, \ldots, 7$ (the possible values of X).
(a) Find the p.f. of X.
(b) Find the probability that X will be at least 5 .
3. Suppose that the p.d.f. of a random variable X is as follows:

$$
f(x)= \begin{cases}c x^{2} & \text { for } 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c and sketch the p.d.f.
(b) Find the value of $\operatorname{Pr}(X>3 / 2)$.
4. Suppose that the p.d.f. of a random variable X is as follows:

$$
f(x)= \begin{cases}c e^{-2 x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

5. Suppose that the c.d.f. F of a random variable X is as sketched below. Find each of the following probabilities:

a. $\operatorname{Pr}(X=-1)$
b. $\operatorname{Pr}(X<0)$
c. $\operatorname{Pr}(X \leq 0)$
d. $\operatorname{Pr}(X=1)$
e. $\operatorname{Pr}(0<X \leq 3)$
f. $\operatorname{Pr}(0<X<3)$
g. $\operatorname{Pr}(0 \leq X \leq 3)$
h. $\operatorname{Pr}(1<X \leq 2)$
i. $\operatorname{Pr}(1 \leq X \leq 2)$
j. $\operatorname{Pr}(X>5)$
k. $\operatorname{Pr}(X \geq 5)$
I. $\operatorname{Pr}(3 \leq X \leq 4)$
6. Suppose that the c.d.f. of a random variable X is as follows:

$$
F(x)= \begin{cases}e^{x-3} & \text { for } x \leq 3 \\ 1 & \text { for } x>3\end{cases}
$$

Find and sketch the p.d.f. of X.
7. Suppose that X has the p.d.f.

$$
f(x)= \begin{cases}2 x & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find and sketch the c.d.f. or X.

