Parametric Statistics Random Variables

Sofia Triantafillou

sof.trianta fillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

October 4, 2023

1/24

Lecture Summary

- 3.1 Discrete Random Variables
- 3.2 Continuous Random Variables
- 3.3 The Cumulative Distribution Function

イロト イボト イヨト イヨト 三日

2/24

- 3.4 Bivariate Distributions
- 3.5 Marginal Distributions

Some slides from MIT open courseware

Last time

- ▶ Two events are called independent when knowing the value of one doesn't influence the probability of the value of the other.
- The conditional probability of A given B denotes the probability of event A in a world where B has occurred.
- We can use the multiplication to compute conditional, marginal and joint probabilities.
- ▶ Bayes rule connects P(A|B) and P(B|A). These two are confused but they are not the same.

Why is Bayes Rule so important?

- ► V: vaccinated
- ▶ H: hospitalized.
- ► P(H|V) = 0.01
- $\blacktriangleright P(H|V^c) = 0.2$
- ▶ Three different possibilities: P(V) = 0.8, 0.5, 0.95

Let's use Bayes rule to compute P(V|H) for all three cases.

P(V)	P(H V)	$P(H V^c)$	P(V H)
0.5	0.01	0.2	0.0476
0.8	0.01	0.2	0.16667
0.95	0.01	0.2	0.4872

Random Variable

A random variable is a mapping $X : \Omega \to \mathbb{R}$ that assigns a real number $X(\omega)$ to each outcome ω .

Example

Consider the experiment of flipping a coin 10 times, and let $X(\omega)$ denote the number of heads in the outcome ω . For example, if $\omega = HHHTHHTTHT$, $X(\omega) = 6$.

Random Variables

- ▶ Why do we need random variables? (easier to work with than original sample space).
- A random variable is NOT a variable (in the algebraic sense).
- ▶ A random variable takes a specific value AFTER the experiment is conducted.

Notation

- Letter near the end of the alphabet since it is a variable in the context of the experiment.
- ▶ Capital letter to distinguish from algebraic variable.
- ▶ Lower case denotes a specific value of the random variable.

Random Variable: Definition

- An assignment of a value (number) to every possible outcome.
- ▶ A real-valued function of the sample space:

 $f:\Omega\to\mathbb{R}$

- Can take discrete or continuous values.
- ▶ Discrete RVs have probability mass functions.
- ▶ Continuous RVs have probability density functions.

Discrete Random Variables

Discrete Distribution/Random Variable

We say that a random variable X has a discrete distribution or that X is a discrete random variable if X can take only a finite number k of different values x_1, \ldots, x_k or, at most, an infinite sequence of different values x_1, x_2, \ldots

Probability Function/p.f./Support.

If a random variable X has a discrete distribution, the probability function (abbreviated p.f.) of X is defined as the function f such that for every real number x,

$$f(x) = \Pr(X = x).$$

The closure of the set $\{x : f(x) > 0\}$ is called the support of (the distribution of) X.

Discrete Random Variables

Discrete Distribution/Random Variable

We say that a random variable X has a discrete distribution or that X is a discrete random variable if X can take only a finite number k of different values x_1, \ldots, x_k or, at most, an infinite sequence of different values x_1, x_2, \ldots

$\label{eq:probability Function/p.f./Support.}$

If a random variable X has a discrete distribution, the probability function (abbreviated p.f.) of X is defined as the function f such that for every real number x,

$$f(x) = \Pr(X = x).$$

The closure of the set $\{x : f(x) > 0\}$ is called the support of (the distribution of) X.

▶ Also known as the probability mass function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへの

Probability (mass) function

If
$$C \subset \mathbb{R}$$
:
 $\Pr(X \in C) = \sum_{x_i \in C} f(x_i),$

If x_1, x_2, \ldots includes all the possible values of X, then

$$\sum_{i=1}^{\infty} f\left(x_i\right) = 1$$

Example: Coin Toss

$$\blacktriangleright P(Heads) = p$$

- $\blacktriangleright \ \Omega = \{Heads, Tails\}$
- Define X(Heads) = 1, X(Tails) = 0

$$\blacktriangleright f(x) =$$

Example: Coin Toss

$$\blacktriangleright P(Heads) = p$$

- $\blacktriangleright \ \Omega = \{Heads, Tails\}$
- Define X(Heads) = 1, X(Tails) = 0

$$\blacktriangleright f(x) = p \text{ for } x = 1$$

Example: Coin Toss

$$\blacktriangleright P(Heads) = p$$

- $\blacktriangleright \ \Omega = \{Heads, Tails\}$
- ▶ Define X(Heads) = 1, X(Tails) = 0

•
$$f(x) = p$$
 for $x = 1$
 $f(x) =$

Example: Coin Toss

$$\blacktriangleright P(Heads) = p$$

- $\blacktriangleright \ \Omega = \{Heads, Tails\}$
- Define X(Heads) = 1, X(Tails) = 0

•
$$f(x) = p$$
 for $x = 1$
 $f(x) = 1 - p$ for $x = 0$.

Example: Coin Toss

▶ You toss a biased coin.

Distribution

$$f(x) = \begin{cases} p^x (1-p)^{1-x} & \text{for } x = 0, 1\\ 0 & \text{otherwise.} \end{cases}$$

4 ロ ト く 日 ト く 目 ト く 目 ト) 見 一 つ へ ()
10 / 24

Discrete Uniform Distribution

Example: Lottery

- ▶ Select a three digit number (leading 0 s allowed).
- Each digit is chosen at random from a separate urn with 10 balls, each with a different digit.
- $\Omega = (i_1, i_2, i_3)$ where $i_j \in \{0, \dots, 9\}$ for j = 1, 2, 3
- If $\omega = (i_1, i_2, i_3)$, define $X(\omega) = 100i_1 + 10i_2 + i_3$. For example, X(0, 1, 5) = 15

$$\blacktriangleright f(x) =$$

Discrete Uniform Distribution

Example: Lottery

- ▶ Select a three digit number (leading 0 s allowed).
- Each digit is chosen at random from a separate urn with 10 balls, each with a different digit.
- $\Omega = (i_1, i_2, i_3)$ where $i_j \in \{0, \dots, 9\}$ for j = 1, 2, 3
- If $\omega = (i_1, i_2, i_3)$, define $X(\omega) = 100i_1 + 10i_2 + i_3$. For example, X(0, 1, 5) = 15
- f(x) = 0.001 for each integer $x \in \{0, 1, \dots, 999\}$.

Discrete Uniform Distribution

Example: Lottery

- ▶ Select a three digit number (leading 0 s allowed).
- Each digit is chosen at random from a separate urn with 10 balls, each with a different digit.

•
$$\Omega = (i_1, i_2, i_3)$$
 where $i_j \in \{0, \dots, 9\}$ for $j = 1, 2, 3$

- If $\omega = (i_1, i_2, i_3)$, define $X(\omega) = 100i_1 + 10i_2 + i_3$. For example, X(0, 1, 5) = 15
- f(x) = 0.001 for each integer $x \in \{0, 1, \dots, 999\}$.

Distribution

$$f(x) = \begin{cases} \frac{1}{b-a+1} & \text{ for } x = a, \dots, b, \\ 0 & \text{ otherwise.} \end{cases}$$

Continuous Distribution/Random Variable

We say that a random variable X has a continuous distribution or that X is a continuous random variable if there exists a nonnegative function f, defined on the real line, such that for every interval of real numbers (bounded or unbounded), the probability that X takes a value in the interval is the integral of f over the interval.

Probability Function/p.f./Support.

If X has a continuous distribution, the function f is called the probability density function (abbreviated p.d.f.) of X. The closure of the set $\{x : f(x) > 0\}$ is called the support of (the distribution of) X.

Continuous Distribution/Random Variable

We say that a random variable X has a continuous distribution or that X is a continuous random variable if there exists a nonnegative function f, defined on the real line, such that for every interval of real numbers (bounded or unbounded), the probability that X takes a value in the interval is the integral of f over the interval.

Probability Function/p.f./Support.

If X has a continuous distribution, the function f is called the probability density function (abbreviated p.d.f.) of X. The closure of the set $\{x : f(x) > 0\}$ is called the support of (the distribution of) X.

•
$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

<ロト <回 > < E > < E > E のQで 13/24

▶ $P(a \le X \le b) = \int_a^b f_X(x) dx$ ▶ $P(a \le X) = \int_a^\infty f_X(x) dx$

イロト イヨト イヨト イヨト

▶ $P(a \le X \le b) = \int_a^b f_X(x)dx$ ▶ $P(a \le X) = \int_a^\infty f_X(x)dx$ ▶ $P(X = a) = \int_a^a f_X(x)dx = 0$

・ロト ・四ト ・ヨト ・ヨト

 $P(a \le X \le b) = \int_a^b f_X(x) dx$ $P(a \le X) = \int_a^\infty f_X(x) dx$ $P(X = a) = \int_a^a f_X(x) dx = 0$

・ロト ・四ト ・ヨト ・ヨト

 $\blacktriangleright \quad \int_{-\infty}^{\infty} f_X(x) = 1$

▶ $P(a \le X \le b) = \int_a^b f_X(x)dx$ ▶ $P(a \le X) = \int_a^\infty f_X(x)dx$ ▶ $P(X = a) = \int_a^a f_X(x)dx = 0$ ▶ $\int_{-\infty}^\infty f_X(x) = 1$

Density is not probability!

P(a ≤ X ≤ b) = ∫_a^b f_X(x)dx
P(a ≤ X) = ∫_a[∞] f_X(x)dx
P(X = a) = ∫_a^a f_X(x)dx=0
∫_{-∞}[∞] f_X(x) = 1

Density is not probability!

$$P(a \le X \le a + \epsilon = \int_{a}^{a+\epsilon} f_X(x) dx = f(a)\epsilon$$

$$P(b \le X \le b + \epsilon = \int_{b}^{b+\epsilon} f_X(x) dx = f(b)\epsilon \text{ for all } f(b)\epsilon \text{ for a$$

Continuous Uniform Distribution

Example: Weather

- Temperature Forecasts announce high and low temperature forecasts as integer numbers of degrees.
- ▶ In reality, the degrees are rounded up to the closest integer.
- Suppose that the forecaster announces a high temperature of y.
- \blacktriangleright X: the actual high temperature.
- > X was equally likely to be any number in the interval from y 1/2 to y + 1/2.

Continuous Uniform Distribution

Example: Weather

- Temperature Forecasts announce high and low temperature forecasts as integer numbers of degrees.
- ▶ In reality, the degrees are rounded up to the closest integer.
- Suppose that the forecaster announces a high temperature of y.
- \blacktriangleright X: the actual high temperature.
- ► X was equally likely to be any number in the interval from y 1/2 to y + 1/2.

Distribution on the interval [a, b]

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{ for } a \le x \le b, \\ 0 & \text{ otherwise} \end{cases}$$

Cumulative Distribution Function (CDF)

$$F_X(x) = P(X \le x) = \begin{cases} \int_{-\infty}^x f_X(t)dt, & \text{if } X \text{ is continuous} \\ \sum_{k \le x} p_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

▶ Nondecreasing. The function F(x) is nondecreasing as x increases; that is, if $x_1 < x_2$, then $F(x_1) \le F(x_2)$.

- ▶ Nondecreasing. The function F(x) is nondecreasing as x increases; that is, if $x_1 < x_2$, then $F(x_1) \le F(x_2)$.
- Limits at $\pm \infty$. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

- ▶ Nondecreasing. The function F(x) is nondecreasing as x increases; that is, if $x_1 < x_2$, then $F(x_1) \le F(x_2)$.
- Limits at $\pm \infty$. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
- Continuity from the Right. A c.d.f. is always continuous from the right; that is, $F(x) = F(x^+)$ at every point x.

For every value x,

$$\Pr(X > x) = 1 - F(x).$$

For every value x,

$$\Pr(X > x) = 1 - F(x).$$

For all values x_1 and x_2 such that $x_1 < x_2$,

$$\Pr(x_1 < X \le x_2) = F(x_2) - F(x_1).$$

For every value x,

$$\Pr(X > x) = 1 - F(x).$$

For all values x_1 and x_2 such that $x_1 < x_2$,

$$\Pr(x_1 < X \le x_2) = F(x_2) - F(x_1).$$

▶ **Proof.** Let
$$A = \{x_1 < X \le x_2\}$$
, $B = \{X \le x_1\}$, and $C = \{X \le x_2\}$. A and B are disjoint, and their union is C, so

$$\Pr(x_1 < X \le x_2) + \Pr(X \le x_1) = \Pr(X \le x_2).$$

Let X have a continuous distribution, and let f(x) and F(x) denote its p.d.f. and the c.d.f., respectively. Then F is continuous at every x,

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

and

$$\frac{dF(x)}{dx} = f(x),$$

at all x such that f is continuous.

Quantiles/Percentiles

Fair Bets

Suppose that X is the number of points of the winning team on NBA basketball game, and X has c.d.f. F. Suppose that we want to place an even-money bet on X as follows: If $X \leq x_0$, we win one dollar and if $X > x_0$ we lose one dollar. How can you make this bet fair?

Quantiles/Percentiles

Fair Bets

Suppose that X is the number of points of the winning team on NBA basketball game, and X has c.d.f. F. Suppose that we want to place an even-money bet on X as follows: If $X \leq x_0$, we win one dollar and if $X > x_0$ we lose one dollar.

How can you make this bet fair? $\Pr(X \le x_0) = \Pr(X > x_0) = 1/2.$

Quantiles/Percentiles.

Let X be a random variable with c.d.f. F. For each p strictly between 0 and 1, define $F^{-1}(p)$ to be the smallest value x such that $F(x) \ge p$. Then $F^{-1}(p)$ is called the p quantile of X or the 100p percentile of X. The function F^{-1} defined here on the open interval (0,1) is called the quantile function of X.

Quantiles/Percentiles

Fair Bets

Suppose that X is the number of points of the winning team on NBA basketball game, and X has c.d.f. F. Suppose that we want to place an even-money bet on X as follows: If $X \leq x_0$, we win one dollar and if $X > x_0$ we lose one dollar.

How can you make this bet fair? $\Pr(X \le x_0) = \Pr(X > x_0) = 1/2.$

Quantiles/Percentiles.

Let X be a random variable with c.d.f. F. For each p strictly between 0 and 1, define $F^{-1}(p)$ to be the smallest value x such that $F(x) \ge p$. Then $F^{-1}(p)$ is called the p quantile of X or the 100p percentile of X. The function F^{-1} defined here on the open interval (0,1) is called the quantile function of X.

Example: Compute the quantile function for the uniform distribution. Joint Probability Mass Function

$$f(x,y) = P(X = x, Y = y)$$
$$\sum_{all(x,y)} f(x,y) = 1 \text{ (still a probability mass function)}$$

Marginal Probability: $f(x) = \sum_{y} f(x, y)$ (sum over all possible y)

Joint Probability Mass Function

What is $P(X \ge 2, Y \ge 2)$?

Joint Probability Density Function

Joint p.d.f.:

 $f(x, y) \ge 0$, everywhere

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=1$$

$$\Pr[(X,Y) \in C] = \int_C \int f(x,y) dx dy$$

Mixed Distributions

Joint p.f./p.d.f

Let X and Y be random variables such that X is discrete and Y is continuous. Suppose that there is a function f(x, y) defined on the xy-plane such that, for every pair A and B of subsets of the real numbers,

$$\Pr(X \in A \text{ and } Y \in B) = \int_B \sum_{x \in A} f(x, y) dy,$$

if the integral exists. Then the function f is called the joint p.f./p.d.f. of X and Y.

イロト イロト イヨト イヨト 三日

Joint (Cumulative) Distribution Function/c.d.f.

The joint distribution function or joint cumulative distribution function (joint c.d.f.) of two random variables X and Y is defined as the function F such that for all values of x and $y(-\infty < x < \infty$ and $-\infty < y < \infty$)

$$F(x, y) = \Pr(X \le x \text{ and } Y \le y).$$

Recap

- Random variables are functions from the sample space to the real line.
- ▶ Random variables can be discrete or continuous.
- ▶ Discrete distributions have probability mass functions.
- ▶ Continuous distributions have probability density functions.
- Both distributions can be described with the cumulative distribution function.
- ▶ The quantile function is the inverse of the CDF, for continuous distributions.
- ▶ Pairs of random variables have joint distributions.