Math Recap

1. Express $9 x^{2}+12 x+10$ in the form $a(x+b)^{2}+c$, where a, b and c are not functions of x.
2. Express the following expressions in terms of $\log (x)$ and $\log (y)$:
(a) $\log \left(x^{3}\right)$
(b) $\log \left(1 / x^{2}\right)$
(c) $\log (x / y)$
(d) $\log (x y)$

3. Evaluate

(a) $\sum_{k=0}^{10} \frac{1}{4^{k}}$
(b) $\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\cdots$
4. Use integration by parts to evaluate $\int_{0}^{1} x \exp (x) d x$.
5. Differentiate: (a) $\exp \left(-x^{2}\right)$
(b) $\log (x)$
(c) $\log \left(x^{3}\right)$
(d) $x^{3} \exp (-x)$
(e) $\frac{x}{\exp (x)}$
6. Use integration by substitution so show that $\int_{0}^{1} \frac{1}{\sqrt{z}(1+\sqrt{z})} d z=2 \log (2)$
7. Sketch rough plots of the following functions, indicating at least the point of intersection with the y axis
(a) $f(x)=\exp (-x),-\infty<x<\infty$
(b) $f(x)=x^{2},-\infty<x<\infty$
(c) $f(x)=\exp \left(-x^{2}\right),-\infty<x<$ ∞

Probability Recap

1. Suppose that $A \subset B$. Show that $B^{c} \subset A^{c}$.
2. Suppose that one card is to be selected from a deck of 20 cards that contains 10 red cards numbered from 1 to 10 and 10 blue cards numbered from 1 to 10 . Let A be the event that a card with an even number is selected, let B be the event that a blue card is selected, and let C be the event that a card with a number less than 5 is selected. Describe the sample space S and describe each of the following events both in words and as subsets of $S:$ (a) $A \cap B \cap C \quad$ (b) $B \cap C^{c} \quad$ (c) $A \cup B \cup C \quad$ (d) $A \cap(B \cup C)$ (e) $A^{c} \cap B^{c} \cap C^{c}$.
3. One ball is to be selected from a box containing red, white, blue, yellow, and green balls. If the probability that the selected ball will be red is $1 / 5$ and the probability that it will be white is $2 / 5$, what is the probability that it will be blue, yellow, or green?
4. If the probability that student A will fail a certain statistics examination is 0.5 , the probability that student B will fail the examination is 0.2 , and the probability that both student A and student B will fail the examination is 0.1 , what is the probability that at least one of these two students will fail the examination?
5. A point (x, y) is to be selected from the square S containing all points (x, y) such that $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Suppose that the probability that the selected point will belong to each specified subset of S is equal to the area of that subset. Find the probability of each of the following subsets: (a) the subset of points such that $\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2} \geq \frac{1}{4}$; (b) the subset of points such that $\frac{1}{2}<x+y<\frac{3}{2}$; (c) the subset of points such that $y \leq 1-x^{2}$; (d) the subset of points such that $x=y$.
6. If two balanced dice are rolled, what is the probability that the sum of the two numbers that appear will be odd?
7. If a man has six different sportshirts and four different pairs of slacks, how many different combinations can he wear?
