
Introduction to multiple regression



Multiple regression

• Simple linear regression: Bivariate - two variables: y and x

• Multiple linear regression: Multiple variables: y and x1, x2, · · ·
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Weights of books

weight (g) volume (cm3) cover
1 800 885 hc
2 950 1016 hc
3 1050 1125 hc
4 350 239 hc
5 750 701 hc
6 600 641 hc
7 1075 1228 hc
8 250 412 pb
9 700 953 pb

10 650 929 pb
11 975 1492 pb
12 350 419 pb
13 950 1010 pb
14 425 595 pb
15 725 1034 pb

w

l

h
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Weights of books (cont.)

The scatterplot shows the 
relationship between weights and  
volumes of books as well as the  
regression output. 
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Books that are 10 cm3  over average are expected to weigh 7g over average.



Modeling weights of books using volume
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somewhat abbreviated output...

Coefficients:

Estimate   Std. Error t value  Pr(>|t|)

(Intercept) 107.67931     88.37758   1.218     0.245

Volume        0.70864      0.09746   7.271  6.26e-06

Residual standard error: 123.9 on 13 degrees of freedom  
Multiple R-squared:  0.8026,Adjusted  R-squared: 0.7875

F-statistic: 52.87 on 1 and 13  DF,  p-value: 6.262e-06



Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and  weight of 
hardcover and paperback books?
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Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and  weight of 
hardcover and paperback books?
Paperbacks generally weigh less than hardcover books after controlling for 
the book's volume.
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Qualitative predictors

How can we include hardcover/paperback in our regression?

When a predictor takes two (categorical) values, we create a dummy variable which takes the 
values 0/1:

𝑐𝑜𝑣𝑒𝑟: 𝑝𝑏 = *
0, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 ℎ𝑎𝑟𝑑𝑐𝑜𝑣𝑒𝑟
1, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘

Which value we select for 0 is arbitrary, and is called the reference value



Qualitative predictors

How can we include hardcover/paperback in our regression?

When a predictor takes two (categorical) values, we create a dummy variable which takes the 
values 0/1:

𝑐𝑜𝑣𝑒𝑟: 𝑝𝑏 = *
0, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 ℎ𝑎𝑟𝑑𝑐𝑜𝑣𝑒𝑟
1, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘

How can we interpret 𝛽! in this case
Assume 𝑦 = 𝛽" + 𝛽!𝑥 + 𝜖# , where 𝑦 𝑖𝑠 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑥 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟: 𝑝𝑏
Then

y$ = *
𝛽" + 𝜖# , 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 ℎ𝑎𝑟𝑑𝑐𝑜𝑣𝑒𝑟
𝛽" + 𝛽! + 𝜖# , 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑣𝑒𝑟 𝑖𝑠 𝑝𝑎𝑝𝑒𝑟𝑏𝑎𝑐𝑘

Paperback books are on average 𝛽! units heavier than hardcover books
Do we expect 𝛽! to be positive or negative?
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Qualitative predictors

When a predictor takes three (categorical) values (e.g., religion: Muslim/Christian/Atheist) we 
create two dummy variables

𝑟𝑒𝑙:𝑚𝑢𝑠𝑙𝑖𝑚 = *
0, 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑁𝑂𝑇 𝑎 𝑀𝑢𝑠𝑙𝑖𝑚
1, 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑎 𝑀𝑢𝑠𝑙𝑖𝑚

𝑟𝑒𝑙: 𝑐ℎ𝑟𝑖𝑠𝑡𝑖𝑎𝑛 = *
0, 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑁𝑂𝑇 𝑎 𝐶ℎ𝑟𝑖𝑠𝑡𝑖𝑎𝑛
1, 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑎 𝐶ℎ𝑟𝑖𝑠𝑡𝑖𝑎𝑛

Why not three?



Modeling weights of books using volume and cover type
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***

Residual standard error: 78.2 on 12 degrees of freedom  
Multiple R-squared: 0.9275,Adjusted R-squared: 0.9154  F-
statistic: 76.73  on  2  and   12  DF, p-value: 1.455e-
07



Visualising the linear model

Still a least 
squares solution.



Modeling conditions

27

The model depends on the following conditions
1. residuals are nearly normal (less important for larger data sets)
2. residuals have constant variance

3. residuals are independent
4. each variable is linearly related to the outcome



Determining the reference level

Based on the regression output below, which level of cover is the  reference 
level? Note that pb: paperback.
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a. paperback

b. hardcover



Determining the reference level

Based on the regression output below, which level of cover is the  reference 
level? Note that pb: paperback.
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a. paperback

b. hardcover



a. response: weight, explanatory: volume, paperback cover

b. response: weight, explanatory: volume, hardcover cover

c. response: volume, explanatory: weight, cover type

d. response: weight, explanatory: volume, cover type

Determining the reference level

Which of the below correctly describes the roles of variables in this  
regression model?
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a. response: weight, explanatory: volume, paperback cover

b. response: weight, explanatory: volume, hardcover cover

c. response: volume, explanatory: weight, cover type

d. response: weight, explanatory: volume, cover type

Determining the reference level

Which of the below correctly describes the roles of variables in this  
regression model?
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Linear Model

Estimate Std. Error t value Pr(>|t|) 
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(Intercept) 197.96 59.19 3.34 0.01
volume 0.72 0.06 11.67 0.00

cover:pb -184.05 40.49 -4.55 0.00

1. For hardcover books: plug in 0 for cover

2. For paperback books: plug in 1 for cover



Visualising the linear model
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Linear model
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Slope of volume: All else held constant, books that are 1 more cubic 
centimeter in volume tend to weigh about 0.72 grams more.

Slope of cover: All else held constant, the model predicts that paperback 
books weigh 184 grams lower than hardcover books.

Intercept: Hardcover books with no volume are expected on average to 
weigh 198 grams.
● Obviously, the intercept does not make sense in context. It only serves 

to adjust the height of the line.



Prediction

Which of the following is the correct calculation for the predicted  weight of a 
paperback book that is 600 cm3?
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(a) 197.96 + 0.72 * 600 - 184.05 * 1

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Prediction

Which of the following is the correct calculation for the predicted  weight of a 
paperback book that is 600 cm3?
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(a) 197.96 + 0.72 * 600 - 184.05 * 1

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Another Example: Predicting Poverty

Response variable: Percentage of residents living in poverty

Explanatory variables: 
Percentage of residents living in a metropolitan area
Percentage of residents  that are white
Percentage of residents that are high-school graduates
Percentage of residents that live in a single-parent, female-led 

household
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Revisit: Modeling poverty

poverty
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Another look at R2
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R2		can be calculated in three ways:

1.square the correlation coefficient of x and y (how we have been 
calculating it)

2.square the correlation coefficient of y and ŷ

3.based on definition:

𝑅! = 1 −
𝑆𝑆"#$
𝑆𝑆%&%



Sum of squares

21

Sum of squares of residuals ∶ 𝑆𝑆!"# = ∑$ 𝑦 − '𝑦 % = 347.68

Sum of squares of 𝑦: 𝑆𝑆&'& = ∑$ 𝑦 − /𝑦 % = 480.25

𝑅% = 1 − ((!"#
(($%$

=  0.29



R squared

• For single-predictor linear regression, this is the square of the
calculation coefficient.

• However, in multiple linear regression, we can’t calculate R2		as the 
square of the correlation between x and y because we  have multiple 
xs.

• And next we’ll learn another measure of explained variability,
adjusted R2, that requires the use of the third approach, ratio of
explained and unexplained variability.
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Adjusted R2

When any variable is added to the model R2 increases.

But it may be the case that the variable is not really informative
(at all or in the context of the other variables)

This is called overfitting and can lead to falsely large 𝑅%
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R2		vs. adjusted R2

When any variable is added to the model R2 increases.

But if the added variable doesn’t really provide any new 
information, or is completely unrelated, adjusted R2 does not 
increase.
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R2		vs. adjusted R2

27

𝑅)*+% = 1 −
𝑆𝑆!"#
𝑆𝑆&'&

×
𝑛 − 1

𝑛 − 𝑝 − 1

where 𝑛 is the number of cases and 𝑝 is the number of predictors (explanatory 
variables) in the model.

• Because 𝑝 is never negative, 𝑅%&'( will always be smaller than 𝑅(

• 𝑅%&'( applies a penalty for the number of predictors included in the model.

• Therefore, we choose models with higher 𝑅%&'( over others.



Calculate adjusted R2

27

𝑆𝑆)*+ = 339.47
𝑆𝑆,-, = 480.25

𝑛 = 51
𝑝 = 2

𝑅)*+% = 1 −
𝑆𝑆!"#
𝑆𝑆&'&

×
𝑛 − 1

𝑛 − 𝑝 − 1 =



Collinearity 
Predicting poverty in US states: pair plot
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Predicting poverty using % female hh + % white
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𝑅! = 1 − ""!"#
""$%$

=  0.29



Predicting poverty using % female hh + % white
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𝑅! = 1 − ""!"#
""$%$

=  0.29



Does adding the variable white to the model add valuable information that 
wasn’t provided by female house?

poverty
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Two predictor variables are said to be collinear when they are  
correlated, and this collinearity complicates model estimation.
Remember: Predictors are also called explanatory or independent variables. Ideally,  they 
would be independent of each other.

Collinearity between explanatory variables
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Two predictor variables are said to be collinear when they are  
correlated, and this collinearity complicates model estimation.
Remember: Predictors are also called explanatory or independent variables. Ideally,  they 
would be independent of each other.

We don’t like adding predictors that are associated with each  other to 
the model, because often times the addition of such  variable brings 
nothing to the table and may lead to overfitting. Instead, we prefer the  
simplest best model.

When we have multiple variables, we want to select a subset of these 
variables to include in the model.

Collinearity between explanatory variables (cont.)
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Beauty in the classroom

31

• Data: Student evaluations of instructors’ beauty and teaching  quality 
for 463 courses at the University of Texas.

• Evaluations conducted at the end of semester, and the beauty  
judgements were made later, by six students who had not  attended 
the classes and were not aware of the course  evaluations (2 upper 
level females, 2 upper level males, one  lower level female, one lower 
level male).

Hamermesh & Parker. (2004)“Beauty in the classroom: instructors’ pulchritude and putative pedagogical  productivity

Economics Education Review.



Beauty in the classroom
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Professor rating vs. beauty

27

Professor evaluation score (higher score means better) vs. beauty  score (a 
score of 0 means average, negative score means below  average, and a 
positive score above average):



Which of the below is correct based on the model output?
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Which of the below is correct based on the model output?
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Exploratory analysis

27

Any interesting features?

For a given beauty score, are 
male professors evaluated 
higher, lower, or about the 
same as female professors?



Professor rating vs. beauty + gender

27

For a given beauty score, are male professors evaluated higher, lower, or 
about the same as female professors?

(a) higher
(b) lower
(c) about the same



Professor rating vs. beauty + gender

27

For a given beauty score, are male professors evaluated higher, lower, or 
about the same as female professors?

(a) higher → Beauty held constant, male professors are rated
0.17 points higher on average than female professors.

(b) lower
(c) about the same



Full Model

27



Hypotheses

27

Just as the interpretation of the slope parameters take into account all other 
variables in the model, the hypotheses for testing for significance of a 
predictor also takes into account all other variables.

𝐻,$ : 𝛽$ = 0 when other explanatory variables are included in the model.
𝐻-$ : 𝛽$ ≠ 0 when other explanatory variables are included in the model.



Assessing significance: numerical variables

The p-value for age is 0.01. What does this indicate?

a. Since p-value is positive, higher the professor’s age, the higher we 
would expect them to be rated.

b. If we keep all other variables in the model, there is strong evidence that 
professor’s age is associated with their rating.

c. Probability that the true slope parameter for age is 0 is 0.01.
d. There is about 1% chance that the true slope parameter for age is -

0.0089.



Assessing significance: numerical variables

The p-value for age is 0.01. What does this indicate?

a. Since p-value is positive, higher the professor’s age, the higher we 
would expect them to be rated.

b. If we keep all other variables in the model, there is strong evidence that 
professor’s age is associated with their rating.

c. Probability that the true slope parameter for age is 0 is 0.01.
d. There is about 1% chance that the true slope parameter for age is -

0.0089.



Assessing significance

Which predictors do not seem to meaningfully contribute to the model, i.e.
may not be significant predictors of professor’s rating score?
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Model selection strategies

Based on what we’ve learned so far, what are some ways you can think of
that can be used to determine which variables to keep in the model and
which to leave out?
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Backward-elimination

27



Backward-elimination

27



Forward-selection

27



Backward-Elimination vs. Forward-Selection

27

Backward elimination with the p-value approach:
1. Start with the full model
2. Drop the variable with the highest p-value and refit a smaller model
3. Repeat until all variables left in the model are significant

Forward selection with the p-value approach:
1. Start with regressions of response vs. each explanatory variable
2. Pick the variable with the lowest significant p-value
3. Add the remaining variables one at a time to the existing model, and 

pick the variable with the lowest significant p-value
4. Repeat until any of the remaining variables does not have a significant 

p-value



Adjusted R2 vs. p-value approaches

27

● The two approaches are similar, but they sometimes lead to different 
models, with the adjusted 𝑅% approach tending to include more 
predictors in the final model.

● When the sole goal is to improve prediction accuracy, use 𝑅% . This is 
commonly the case in machine learning applications.

● When we care about understanding which variables are statistically 
significant predictors of the response, or if there is interest in producing 
a simpler model at the potential cost of a little prediction accuracy, then 
the p-value approach is preferred.

● Regardless of the approach we use, our job is not done after variable 
selection – we must still verify the model conditions are reasonable.



Checking model conditions using graphs



Modeling conditions

27

The model depends on the following conditions
1. residuals are nearly normal (less important for larger data sets)
2. residuals have constant variability
3. residuals are independent
4. each variable is linearly related to the outcome

We often use graphical methods to check the validity of these conditions, 
which we will go through in detail in the following slides.



(1) nearly normal residuals

27

Histogram of the residuals.

Does this condition appear to be satisfied?



(2) constant variability in residuals
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Scatterplot of residuals and/or absolute value of residuals vs. fitted (predicted).

Does this condition appear to be satisfied?



Checking constant variance - recap

When we did simple linear regression (one explanatory  variable) we 
checked the constant variance condition using a  plot of residuals vs. x.

With multiple linear regression (2+ explanatory variables) we  checked the 
constant variance condition using a plot of  residuals vs. fitted.

Why are we using different plots?

52



Checking constant variance - recap

When we did simple linear regression (one explanatory  variable) we 
checked the constant variance condition using a  plot of residuals vs. x.

With multiple linear regression (2+ explanatory variables) we  checked the 
constant variance condition using a plot of  residuals vs. fitted.

Why are we using different plots?

In multiple linear regression there are many explanatory variables, so a 
plot of residuals vs. one of them wouldn’t give us the complete picture.
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(4) linear relationships

27

Scatterplot of residuals vs. each (numerical) explanatory variable.

Does this condition appear to be satisfied?



Several options for improving a model

27

Transforming variables

Seeking out additional variables to fill model gaps

Using more advanced methods that would account for challenges around 
inconsistent variability or nonlinear relationships between predictors and 
the outcome



Transformations

27

If the concern with the model is non-linear relationships between the 
explanatory variable(s) and the response variable, transforming the 
response variable can be helpful.
● Log transformation (log y)
● Square root transformation (sqrt(y))
● Inverse transformation (1/y)

It is also possible to apply transformations to the explanatory variable(s), 
however such transformations tend to make the model coefficients even 
harder to interpret.



Models can be wrong, but useful

27

All models are wrong, but some are useful.
- George Box

No model is perfect, but even imperfect models can be useful, as long as 
we are clear and report the model’s shortcomings.

If conditions are grossly violated, we should not report the model results, 
but instead consider a new model, even if it means learning more statistical 
methods or hiring someone who can help.


