Linear Regression



Fitting a line
y =PBo + Pix

predicted y,// \

slope  ©€xplanatory variable
intercept



Choosing a line

Residual is the difference between the observed (y;) and predicted y..
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predicted.
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A measure for the best line

e \We want a line that has small residuals
1. Option 1: Minimize the sum of magnitudes (absolute values) of
residuals
les| + lez] +...+ e,
2. Option 2: Minimize the sum of squared residuals -- least squares
el+e+..+e.?

e Why least squares?
1. Most commonly used
2. Easier to compute by hand and using software
3. In many applications, a residual twice as large as another is
usually more than twice as bad



Finding the least squares line

Find by, b; that minimize the sum of squared residuals
RSS = ) (5 = y0)?
i

To compute the distribution of the estimators by = By, b; = B4
we need to make some assumptions.



Slope

The slope of the regression can be calculated as

— XX =)y —Y)
181 - bl — Z(xl _ f)z




Slope

The slope of the regression can be calculated as
~ o 2= —-Yy)
e A
_ VI —92/m X0 — 0@ — ) _5,
VIO = D2 /S - 02Ny —7)? S

Interpretation: How many standard deviations do you expect
y to change, if you increase x by one standard deviation.



Intercept

The intercept is where the regression line intersects the y-axis. The

calculation of the intercept uses the fact the regression line always
passes through (X, y).

Interpretation: Average y for x = 0.



Linear Regression as conditional
distribution of Y|X=x

If the values y; correspond to a random variable Y, then we are interested
in describing the conditional distribution of Y given the values of the
predictors x.

Theny; = By + B1x; + €

fIX =x) ~?



Conditions for the least squares line

Linearity
Normality
Constant variance (homoskedasticity)

HwnN e

Independence



Conditions: (1) Linearity

e The relationship between the explanatory and the mean of the
response variable is linear
e There exist parameters [y, f; such that E(Y;|x;) = By + B1x;



Conditions: (1) Linearity

® The relationship between the explanatory and the mean of the response
variable is linear

e There exist parameters By, f; such that E(Y;|x;) = By, +B1x;

e Check using a scatterplot of the data, or a residuals plot.
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Anatomy of a residuals plot

A RI:

% HS grad = 81 % in poverty = 10.3
% in poverty = 64.68 — 0.62 x 81 = 14.46

e —

e = % in poverty — % in poverty
= 10.3 -14.46 = —4.16

I
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Anatomy of a residuals plot

A RI:
E15— % HS grad = 81 % in poverty = 10.3
g % in poverty = 64.68 — 0.62 * 81 = 14.46
< 10- e = % in poverty — % in poverty
= 10.3 -14.46 = —4.16
5_
80 85 90 H DC:
% HS grad
5 - % HS grad = 86 % in poverty = 16.8
g S X T 7 .| % in poverty = 64.68 — 0.62 + 86 = 11.36
-5 A

SN

e = % in poverty — % in poverty
=16.8-11.36 =5.44



Conditions: (2) Normality

e For any fixed value of X, Y is normally distributed.



Conditions: (2) Normality

e For any fixed value of X, Y is normally distributed.

® The residuals should be nearly normal.
e This condition may not be satisfied when there are unusual observations

that don't follow the trend of the rest of the data.



Conditions: (2) Normality

For any fixed value of X, Y is normally distributed.

The residuals should be nearly normal.
e This condition may not be satisfied when there are unusual observations

that don't follow the trend of the rest of the data.
® Check using a histogram or normal probability plot of residuals.
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Conditions: (3) Constant variance

% in poverty
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e The variance of points around
the least squares line should
be roughly constant.



Conditions: (3) Constant variance

% in poverty

-4 0 4

e The variance of points around
the least squares line should
be roughly constant.

® This implies that the variance
of residuals around the O line
should be roughly constant as
well.



Conditions: (3) Constant variance

% in poverty
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The variance of points around
the least squares line should
be roughly constant.

This implies that the variance
of residuals around the O line
should be roughly constant as
well.

Also called homoscedasticity.



Conditions: (3) Constant variance

e The variance of points around
the least squares line should
be roughly constant.

® This implies that the variance

% in poverty

of residuals around the 0 line

should be roughly constant as

. well.
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Checking conditions

What condition is this linear
model obviously violating?

(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers
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Checking conditions

What condition is this linear
model obviously violating?

(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers
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Checking conditions

What condition is this linear ."
model obviously violating?

(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers




Checking conditions

What condition is this linear ."
model obviously violating?

(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers




Why do we need these assumptions

® These assumptions allow us to specify the conditional joint
distribution of Ygiven the values x; of X and the parameters

ﬁO' lglr 0-2

1
FO1x, Bo fr,0%) = s expl- ZJZZm ~Bo = Brxi)?

MLE estimates for 3, ,6’1,

bo, by, Z(yl by — by,



Least squares estimates for S, 1

— — Sample

® IBO =y — ,81 X standard

/ deviation of y

o B\ _ 2ixi=0)@i=y) _ S_yR
1 Zi(xi_f)z Sx
/‘ Correlation
Sample coefficient
standard

deviation of x

Fitted linear model:
Vi = Bo + P1x;
Residuals:
e; =Yyi— i



Regression line

% in poverty = 64.68 — 0.62 % HS grad

% in poverty

% HS grad



Coefficient of
determination



RZ

e The strength of the fit of a linear model is commonly evaluated using R-.

SSres = 2(3’1'—5’\1')2 = z eiz
l. .

l
SSror = 2(}’1'—37)2
i

SSRrES

R?=1 —
SSTOT




R2

e The strength of the fit of a linear model is commonly evaluated using R-.

e R?is calculated as the square of the correlation coefficient.

e It tells us what percent of variance in the response variable is explained by the
model.

e The remainder of the variance is explained by variables not included in the
model or by inherent randomness in the data.



Interpretation of R?

Which of the below is the correct interpretation of R =-0.75, RZ2 = 0.56?

(2)56% of the variance in the % of HG graduates among the 51
states is explained by the model.

(b)56% of the variance in the % of residents living in poverty
among the 51 states is explained by the model.

(C)56% of the time % HS graduates predict % living in poverty
correctly.

(d)75% of the variance in the % of residents living in poverty
among the 51 states is explained by the model.
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Interpretation of R?

Which of the below is the correct interpretation of R =-0.75, RZ2 = 0.56?

(a)56% of the variance in the % of HG graduates among the 51
states is explained by the model.

(C)56% of the time % HS graduates predict % living in poverty
correctly.

(d)75% of the variance in the % of residents living in poverty
among the 51 states is explained by the model.
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Distribution of
Estimators



Least squares/MLE estimates for 8, 1

_ Sample
— ﬁl X standard

/ deviation of y

® b, = BI _ 2i(xXi—X)y; _ Sy

2i(xi—%)x; Sx R \
\ orrelation

coefficient

® bo:BE

1
<

Sample
standard
deviation of x

Under the assumptions of linear regression, these are also the MLE estimates for Sy, f1



MLE estimate for g

® %= %Zi(yi —Bo —Bix))’



=~ _ 2ilxi=0)y;
° 'Bl Zi(xi_f)xi

® %= %Zi(yi —Bo —Bix))’



o E _ uixi—=xX)(yi—y) No

® ;2

Yi(xj—x)*

%Zi(yi — EE — f?;xi)z Yes —divide by n-2 for unbiased
estimator.



Distribution of the least squares estimators.

—

N 2 Xix{
® [ N(,Bo:J nzi(xi_f)z)

2

= o
® [ ~ N(ﬁl»nzi(xi_f)z)

xo2

® Cov(Bo,Br) = 5

xi—f)z

From CLT! Requires large samples



Inference for
Linear Regression



Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of
differences in intelligence: A study of monozygotic twins reared apart?"

The data consist of IQ scores for a random sample of 27 identical twins,

one raised by foster parents, the other by the biological parents.
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Nature or nurture?

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 9.20760 9.29990 0.990 0.332
bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09



Practice

Coefficients:

Estimate Std. Error t wvalue Pr(>|t]|)
(Intercept) 9.20760 9.29990 0.990 0.332
bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

(a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in
the foster twin's IQ, on average.

(b) The linear model is fosterIQ = 9.2 + 0.9 x biolQ

(c) Foster twins with IQs higher than average IQs tend to have biological twins with higher
than average 1Qs as well.



Nature or nurture?

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 9.20760 9.29990 0.990 0.332
bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

B, =9.21 . ¥ x?
B\ =0.90 Var(,BO) =0 nZi(xix— X)?
1 -_ o
_ o’
>, x? Var(B) = o5 e =72

SE(fo) = 2 (x; — %)?
SE(X) = ax/Vn
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Testing

Assuming that these 27 twins comprise a representative sample of
all twins separated at birth, we would like to test if these data
provide convincing evidence that the 1Q of the biological twin is a
significant predictor of 1Q of the foster twin. What are the
appropriate hypotheses?



Testing

Assuming that these 27 twins comprise a representative sample of
all twins separated at birth, we would like to test if these data
provide convincing evidence that the 1Q of the biological twin is a
significant predictor of 1Q of the foster twin. What are the
appropriate hypotheses?

(a) Hy:by=0; Hy: by# 0
(b) Hy: 8,=0; H,: 6,20
(c) Hy:b;=0; Hy: b, #0
(d)Hy:6,=0; H;: 6,20



Testing for the slope

Assuming that these 27 twins comprise a representative sample of
all twins separated at birth, we would like to test if these data
provide convincing evidence that the 1Q of the biological twin is a
significant predictor of 1Q of the foster twin. What are the
appropriate hypotheses?

(a) Hy:by=0; Hy: by# 0
(b) Hy: 8,=0; H,: 6,20
(c) Hy:b;=0; Hy: b, #0
(d)Hy: 6,=0; Hy:6,%20



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000




Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

e \We always use a t-test in inference for regression.



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

e \We always use a t-test in inference for regression.

test statistic T = (point estimate - null value) / SE



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

e We always use a t-test in inference for regression.

test statistic T = (point estimate - null value) / SE

e Point estimate = b, is the observed slope.



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])

(Intercept)  9.2076 92999  0.99 0.3316
biolQ  0.9014 0.0963  9.36 0.0000

e We always use a t-test in inference for regression.

test statistic T = (point estimate - null value) / SE

e Point estimate = b, is the observed slope.
® SE,;isthe standard error associated with the slope.



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

e We always use a t-test in inference for regression.

test statistic T = (point estimate - null value) / SE

e Point estimate = b, is the observed slope.

e SE,;isthe standard error associated with the slope.
Degrees of freedom associated with the slopeis df =n - 2,
where n is the sample size.



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

e We always use a t-test in inference for regression.

test statistic T = (point estimate - null value) / SE

e Point estimate = b, is the observed slope.

® SE,;isthe standard error associated with the slope.
Degrees of freedom associated with the slope isdf=n - 2,
where n is the sample size.

we lose 1 degree of freedom for each parameter we estimate, and in
simple linear regression we estimate 2 parameters, 8, and 8;.



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t|)

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000




Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t|)

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

0.9014-0
~ 0.0963 = 990




Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t|)

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

0.9014 -0

- - 9.3

d 0.0963 ~ °
df = 27-2=25



Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>[t|)

(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

0.9014-0

= - 9.3

d 0.0963
df = 27-2=25

p—value = P(|T|> 9.36) <0.01



Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate * t ;¢ *

SE and the degrees of freedom associated with the slope in a simple linear

regression is n - 2. Which of the below is the correct 95% confidence interval for

the slope parameter? Note that the model is based on observations from 27

twins.

Estimate

Std. Error

t value

Pr(>1t)

(Intercept)
biolQ

9.2076
0.9014

9.2999
0.0963

0.99
9.36

0.3316
0.0000

(a) 9.2076 + 1.65 x 9.2999
(b) 0.9014 + 2.06 x 0.0963
(c) 0.9014 + 1.96 x 0.0963
(d) 9.2076 + 1.96 x 0.0963

m p=.55 .60 .63 70 15 .80 .85 .90 .95 975 .99 995
21 127 257 391 532 686 859 1.063 1323 1.721 2.080 2518  2.831
22 127 25 390 532 w686 858 106l 1.321 1717 2074 2508 2819
23 127 256 390 532 685 858 1.060 1.319 1.714 2069 2500  2.807
24 127 256 390 531 685 857 1.059 1318 1711 2.064 2492 2797
25 127 25 390 531 684 856 1.058 1.31e 1708  2.060 2485 2787
26 127 256 390 531 684 856 1.058 1315 1706 2056 2479 2779
27 127 256 389 531 684 855 1.057 1314 1703  2.052 2473 2771
28 127 256 389 5300 683 855 1.056 1.313 1.701 2048 2467 2763
29 127 256 389 530 683 854 1.055 1.311 1699 2045 2462 2756
30 127 256 389 530 683 854 1.055 1.310 1697 2042 2457 2750



Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate * t ;¢ *

SE and the degrees of freedom associated with the slope in a simple linear
regression is n - 2. Which of the below is the correct 95% confidence interval for
the slope parameter? Note that the model is based on observations from 27
twins.

Estimate Std. Error tvalue Pr(>[t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

m p=.55 .60 .65 70 g5 .80 .85 .90 .95 975 .99 995

(@) 9.2076 + 1.65 x 9.2999

21 127 257 391 532 686 859 1.063 1323 1.721 2.080 2518  2.831

22 127 25 390 532 686 858 106l 1.321 1717 2074 2508  2.819

(b) 0'9014 i 2‘06 X 0'0963 23 127 256 390 532 685 858 1.060 1.319 1.714 2069 2500  2.807
24 127 256 390 531 685 857 1.059 1318 1.711 2492 2797

+ 25 127 25 390 531 684 856 1.058 1316 1.708 -2.060 2485 2787

(C) 0'9014 - 1'96 X 0'0963 26 127 256 390 531 684 856 1.058 1315 1706 205 2479 2779
27 127 256 389 531 684 855 1.057 1314 1.703  2.052 2473 2771

(d) 9.2076 i 1-96 X 0.0963 28 127 256 380 5300 683 855 1.056 1313 1.701 2048 2467 2763

29 127 256 389 530 683 854 1.055 1.311 1699 2045 2462 2756
30 127 256 389 530 683 854 1.055 1.310 1697 2.042 2457 2730

n=27 df=27-2=25
For a y — confidence interval we look at (1+y)/2 T-quantile



Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate + ME and the
degrees of freedom associated with the slope in a simple linear regression is n - 2.
Which of the below is the correct 95% confidence interval for the slope
parameter? Note that the model is based on observations from 27 twins.

Estimate Std. Error tvalue Pr(>[t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

n=27 df=27-2=25

(a) 9.2076 + 1.65 x 9.2999
95%: tys* = 2.06

(b) 0.9014 + 2.06 x 0.0963
(c) 0.9014 + 1.96 x 0.0963 0.9014 # 2.06 x 0.0963

(d) 9.2076 + 1.96 x 0.0963



Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate + ME and the
degrees of freedom associated with the slope in a simple linear regression is n - 2.
Which of the below is the correct 95% confidence interval for the slope
parameter? Note that the model is based on observations from 27 twins.

Estimate Std. Error tvalue Pr(>[t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36 0.0000

n=27 df=27-2=25

(a) 9.2076 + 1.65 x 9.2999
95%: tys* = 2.06

(b) 0.9014 + 2.06 x 0.0963
(c) 0.9014 + 1.96 x 0.0963 0.9014 # 2.06 x 0.0963

(d) 9.2076 + 1.96 x 0.0963 (0.7, 1.1)



8.39 Husbands and wives, Part lll. Exercise 8.33 presents a scatterplot displaying the relationship between
husbands’ and wives’ ages in a random sample of 170 married couples in Britain, where both partners’ ages
are below 65 years. Given below is summary output of the least squares fit for predicting wife’s age from
husband’s age.

....
60 o o ® o
a e o ¢ L J
— coe ¢ o
8 c . SN
-; L J :!::.'.... “
; 40+ o0 O.l.li -, Estimate  Std. Error t value Pr(>|t])
> o 80%g (Intercept) 1.5740 1.1501 1.37 0.1730
» . ® 'd::" o *° . age_husband 0.9112 0.0259 35.25 0.0000
- ®
% i‘i: ®ess ‘ df = 168
®e %
204 ' ¢
| | |
20 40 60

Husband's age (in years)

(a) We might wonder, is the age difference between husbands and wives consistent across ages? If this were
the case, then the slope parameter would be 81 = 1. Use the information above to evaluate if there is
strong evidence that the difference in husband and wife ages differs for different ages.

b) Write the equation of the regression line for predicting wife’s age from husband’s age.
(b) q gr P g g g
(c) Interpret the slope and intercept in context.

(d) Given that R% = 0.88, what is the correlation of ages in this data set?

(e) You meet a married man from Britain who is 55 years old. What would you predict his wife’s age to
be? How reliable is this prediction?

(f) You meet another married man from Britain who is 85 years old. Would it be wise to use the same
linear model to predict his wife’s age? Explain.

20Source: R Dataset, stat.ethz.ch/R-manual /R-patched /library/datasets/html/trees.html.



