Linear Regression

Fitting a line

Choosing a line

Residual is the difference between the observed $\left(y_{i}\right)$ and predicted \hat{y}_{i}.

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

\% living in poverty in DC is 5.44% more than predicted.
\% living in poverty in RI is 4.16% less than predicted.

A measure for the best line

- We want a line that has small residuals

1. Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$
\left|e_{1}\right|+\left|e_{2}\right|+\ldots+\left|e_{n}\right|
$$

2. Option 2: Minimize the sum of squared residuals -- least squares

$$
e_{1}^{2}+e_{2}^{2}+\ldots+e_{n}^{2}
$$

- Why least squares?

1. Most commonly used
2. Easier to compute by hand and using software
3. In many applications, a residual twice as large as another is usually more than twice as bad

Finding the least squares line

Find b_{0}, b_{1} that minimize the sum of squared residuals

$$
R S S=\sum_{i}\left(\widehat{y}_{i}-y_{i}\right)^{2}
$$

To compute the distribution of the estimators $b_{0}=\widehat{\beta_{0}}, b_{1}=\widehat{\beta_{1}}$ we need to make some assumptions.

Slope

The slope of the regression can be calculated as

$$
\widehat{\beta_{1}}=b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

Slope

The slope of the regression can be calculated as

$$
\begin{gathered}
\widehat{\beta_{1}}=b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}= \\
=\frac{\sqrt{\sum\left(y_{i}-\bar{y}\right)^{2} / n}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} / n} \frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\frac{s_{y}}{s_{x}} R
\end{gathered}
$$

Interpretation: How many standard deviations do you expect y to change, if you increase x by one standard deviation.

Intercept

The intercept is where the regression line intersects the y-axis. The calculation of the intercept uses the fact the regression line always passes through (\bar{x}, \bar{y}).

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

Interpretation: Average y for $x=0$.

Linear Regression as conditional distribution of $\mathrm{Y} \mid \mathrm{X}=\mathrm{x}$

If the values y_{i} correspond to a random variable Y, then we are interested in describing the conditional distribution of Y given the values of the predictors x.

Then $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$

$$
f(Y \mid X=x) \sim ?
$$

Conditions for the least squares line

1. Linearity
2. Normality
3. Constant variance (homoskedasticity)
4. Independence

Conditions: (1) Linearity

- The relationship between the explanatory and the mean of the response variable is linear
- There exist parameters β_{0}, β_{1} such that $E\left(Y_{i} \mid x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$

Conditions: (1) Linearity

- The relationship between the explanatory and the mean of the response variable is linear
- There exist parameters β_{0}, β_{1} such that $E\left(Y_{i} \mid x_{i}\right)=\beta_{0},+\beta_{1} x_{i}$
- Check using a scatterplot of the data, or a residuals plot.

Anatomy of a residuals plot

A RI:
$\% H S$ grad $=81 \quad \%$ in poverty $=10.3$
$\%$ in poverty $=64.68-0.62 * 81=14.46$
$e=\%$ in poverty $-\%$ in poverty
$=10.3-14.46=-4.16$

Anatomy of a residuals plot

A RI:

$\%$ HS grad $=81 \quad \%$ in poverty $=10.3$
$\%$ in poverty $=64.68-0.62 * 81=14.46$

$$
e=\% \text { in poverty }-\% \text { in poverty }
$$

$$
=10.3-14.46=-4.16
$$

- DC:

$$
\begin{aligned}
\% \text { HS grad } & =86 \quad \% \text { in poverty }=16.8 \\
\% \text { in poverty } & =64.68-0.62 * 86=11.36 \\
e & =\% \text { in poverty }-\% \text { in poverty } \\
& =16.8-11.36=5.44
\end{aligned}
$$

Conditions: (2) Normality

- For any fixed value of X, Y is normally distributed.

Conditions: (2) Normality

- For any fixed value of X, Y is normally distributed.
- The residuals should be nearly normal.
- This condition may not be satisfied when there are unusual observations that don't follow the trend of the rest of the data.

Conditions: (2) Normality

- For any fixed value of X, Y is normally distributed.
- The residuals should be nearly normal.
- This condition may not be satisfied when there are unusual observations that don't follow the trend of the rest of the data.
- Check using a histogram or normal probability plot of residuals.

Conditions: (3) Constant variance

- The variance of points around the least squares line should be roughly constant.

Conditions: (3) Constant variance

- The variance of points around the least squares line should be roughly constant.
- This implies that the variance of residuals around the 0 line should be roughly constant as well.

Conditions: (3) Constant variance

- The variance of points around the least squares line should be roughly constant.
- This implies that the variance of residuals around the 0 line should be roughly constant as well.
- Also called homoscedasticity.

Conditions: (3) Constant variance

- The variance of points around the least squares line should be roughly constant.
- This implies that the variance of residuals around the 0 line should be roughly constant as well.
- Also called homoscedasticity.
- Check using a histogram or normal probability plot of residuals.

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Checking conditions

What condition is this linear model obviously violating?
(a) Constant variance
(b) Linear relationship
(c) Normal residuals
(d) No extreme outliers

Why do we need these assumptions

- These assumptions allow us to specify the conditional joint distribution of Y given the values x_{i} of X and the parameters $\beta_{0}, \beta_{1}, \sigma^{2}$
$f\left(y \mid x, \beta_{0}, \beta_{1}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right]$
MLE estimates for $\beta_{0}, \beta_{1}, \sigma^{2}$:

$$
b_{o}, b_{1}, \frac{1}{n} \sum_{i}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

Least squares estimates for $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}$

- $\widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}$

Sample standard deviation of y

- $\widehat{\beta_{1}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{y}}{S_{x}} R$

Correlation
Sample coefficient

Fitted linear model:

$$
\widehat{y_{i}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} x_{i}
$$

Residuals:

$$
e_{i}=y_{i}-\widehat{y_{i}}
$$

Regression line

$\%$ in poverty $=64.68-0.62 \%$ HS grad

Coefficient of determination

- The strength of the fit of a linear model is commonly evaluated using R^{2}.

$$
\begin{gathered}
S S_{R E S}=\sum_{i}\left(y_{i}-\widehat{y_{i}}\right)^{2}=\sum_{i} e_{i}^{2} \\
S S_{T O T}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2} \\
R^{2}=1-\frac{S S_{R E S}}{S S_{\text {TOT }}}
\end{gathered}
$$

- The strength of the fit of a linear model is commonly evaluated using R^{2}.
- R^{2} is calculated as the square of the correlation coefficient.
- It tells us what percent of variance in the response variable is explained by the model.
- The remainder of the variance is explained by variables not included in the model or by inherent randomness in the data.

Interpretation of $\mathbf{R}^{\mathbf{2}}$

Which of the below is the correct interpretation of $R=-0.75, R^{2}=0.56$?

(a) 56% of the variance in the $\%$ of HG graduates among the 51 states is explained by the model.
(b) 56% of the variance in the $\%$ of residents living in poverty among the 51 states is explained by the model
(c) 56% of the time $\%$ HS graduates predict $\%$ living in poverty correctly.
(d) 75% of the variance in the \% of residents living in poverty among the 51 states is explained by the model.

Interpretation of $\mathbf{R}^{\mathbf{2}}$

Which of the below is the correct interpretation of $R=-0.75, R^{2}=0.56$?

(a) 56% of the variance in the \% of HG graduates among the 51 states is explained by the model.
(b) 56% of the variance in the \% of residents living in poverty among the 51 states is explained by the model.
(C) 56% of the time \% HS graduates predict \% living in poverty correctly.
(d) 75% of the variance in the \% of residents living in poverty among the 51 states is explained by the model.

Distribution of Estimators

Least squares/MLE estimates for $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}$

- $b_{o}=\widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}$

Sample
standard
deviation of y

- $b_{1}=\widehat{\beta_{1}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{s_{y}}{s_{x}} R_{\text {w }}$

Sample
Correlation coefficient
standard
deviation of x

Under the assumptions of linear regression, these are also the MLE estimates for β_{0}, β_{1}

MLE estimate for $\boldsymbol{\sigma}^{\mathbf{2}}$

- $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i}\left(y_{i}-\widehat{\beta_{0}}-\widehat{\beta_{1}} x_{i}\right)^{2}$

Bias?

- $\widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}$
- $\widehat{\beta_{1}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i}\left(x_{i}-\bar{x}\right) x_{i}}$
- $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i}\left(y_{i}-\widehat{\beta_{0}}-\widehat{\beta_{1}} x_{i}\right)^{2}$

Bias?

- $\widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}$ No
- $\widehat{\beta_{1}}=\frac{\Sigma_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\Sigma_{i}\left(x_{i}-\bar{x}\right)^{2}} \mathrm{No}$
- $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i}\left(y_{i}-\widehat{\beta_{0}}-\widehat{\beta_{1}} x_{i}\right)^{2}$ Yes -divide by $n-2$ for unbiased estimator.

Distribution of the least squares estimators.

- $\widehat{\beta_{0}} \sim N\left(\beta_{0}, \sigma^{2} \frac{\sum_{i} x_{i}^{2}}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)$
- $\widehat{\beta_{1}} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)$
- $\operatorname{Cov}\left(\widehat{\beta_{0}}, \widehat{\beta_{1}}\right)=\frac{\bar{x} \sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}$

Inference for Linear Regression

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared apart?" The data consist of IQ scores for a random sample of 27 identical twins, one raised by foster parents, the other by the biological parents.

Nature or nurture?

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779, Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

Practice

Coefficients:

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779, Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
(a) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
(b) The linear model is fosterI $Q=9.2+0.9 \times$ bioI Q
(c) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Nature or nurture?

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.20760	9.29990	0.990	0.332
bioIQ	0.90144	0.09633	9.358	$1.2 e-09$

Residual standard error: 7.729 on 25 degrees of freedom Multiple R-squared: 0.7779, Adjusted R-squared: 0.769 F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
$\widehat{\beta_{0}}=9.21$
$\widehat{\beta_{1}}=0.90$

$$
\operatorname{Var}\left(\widehat{\beta_{0}}\right)=\sigma^{2} \frac{\sum_{i} x_{i}^{2}}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

$\widehat{S E}\left(\widehat{\beta_{0}}\right)=\widehat{\sigma} \sqrt{\frac{\sum_{i} x_{i}^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}$

$$
\operatorname{Var}\left(\widehat{\beta_{1}}\right)=\frac{\sigma^{2}}{n \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
S E(X)=\sigma_{x} / \sqrt{n}
$$

$\widehat{S E}\left(\widehat{\beta_{1}}\right)=\frac{\widehat{\sigma}}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}$

Testing

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

Testing

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?
(a) $H_{0}: b_{0}=0 ; H_{A}: b_{0} \neq 0$
(b) $H_{0}: B_{0}=0 ; H_{A}: B_{0} \neq 0$
(c) $H_{0}: b_{1}=0 ; H_{A}: b_{1} \neq 0$
(d) $H_{0}: B_{1}=0 ; H_{A}: B_{1} \neq 0$

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?
(a) $H_{0}: b_{0}=0 ; H_{A}: b_{0} \neq 0$
(b) $H_{0}: B_{0}=0 ; H_{A}: B_{0} \neq 0$
(c) $H_{0}: b_{1}=0 ; H_{A}: b_{1} \neq 0$
(d) $H_{0}: B_{1}=0 ; H_{A}: B_{1} \neq 0$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) $/ \mathrm{SE}$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) / SE

- Point estimate $=b_{1}$ is the observed slope.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) / SE

- Point estimate $=b_{1}$ is the observed slope.
- $S E_{b 1}$ is the standard error associated with the slope.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) $/ \mathrm{SE}$

- Point estimate $=b_{1}$ is the observed slope.
- $S E_{b 1}$ is the standard error associated with the slope.
- Degrees of freedom associated with the slope is $d f=n-2$, where n is the sample size.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression.

Remember: test statistic $T=$ (point estimate - null value) / SE

- Point estimate $=b_{1}$ is the observed slope.
- $S E_{b 1}$ is the standard error associated with the slope.
- Degrees of freedom associated with the slope is $d f=n-2$, where n is the sample size.

Remember: we lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, B_{0} and B_{1}.

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
T=\frac{0.9014-0}{0.0963}=9.36
$$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
\begin{aligned}
T & =\frac{0.9014-0}{0.0963}=9.36 \\
d f & =27-2=25
\end{aligned}
$$

Testing for the slope (cont.)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

$$
\begin{aligned}
T & =\frac{0.9014-0}{0.0963}=9.36 \\
d f & =27-2=25 \\
p-\text { value } & =P(|T|>9.36)<0.01
\end{aligned}
$$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm t_{d f} *$ $S E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

m	$p=.55$.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
21	.127	.257	.391	.532	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831
22	.127	.256	.390	.532	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819
23	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807
24	.127	.256	.390	.531	.685	.857	1.059	1.318	1.711	2.064	2.492	2.797
25	.127	.256	.390	.531	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787
26	.127	.256	.390	.531	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779
27	.127	.256	.389	.531	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771
28	.127	.256	.389	.530	.683	.555	1.056	1.313	1.701	2.048	2.467	2.763
29	.127	.256	.389	.530	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756
30	.127	.256	.389	.530	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm t_{d f} *$ $S E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
(d) $9.2076 \pm 1.96 \times 0.0963$

m	$p=.55$.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
21	.127	.257	.391	.532	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831
22	.127	.256	.390	.532	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819
23	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807
24	.127	.256	.390	.531	.685	.857	1.059	1.318	1.711	2.064	2.492	2.797
25	.127	.256	.390	.531	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787
26	.127	.256	.390	.531	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779
27	.127	.256	.389	.531	.684	.855	1.057	1.314	1.003	2.052	2.473	2.771
28	.127	.256	.389	.530	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763
29	.127	.256	.389	.530	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756
30	.127	.256	.389	.530	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750

$$
n=27 \quad d f=27-2=25
$$

For a γ - confidence interval we look at $(1+\gamma) / 2$ T-quantile

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
$n=27 \quad d f=27-2=25$
(d) $9.2076 \pm 1.96 \times 0.0963$
$95 \%: t_{25}{ }^{*}=2.06$
$0.9014 \pm 2.06 \times 0.0963$

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate $\pm M E$ and the degrees of freedom associated with the slope in a simple linear regression is $n-2$. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

(a) $9.2076 \pm 1.65 \times 9.2999$
(b) $0.9014 \pm 2.06 \times 0.0963$
(c) $0.9014 \pm 1.96 \times 0.0963$
$n=27 \quad d f=27-2=25$
(d) $9.2076 \pm 1.96 \times 0.0963$

95\%: $t_{25}{ }^{*}=2.06$
$0.9014 \pm 2.06 \times 0.0963$
(0.7, 1.1)
8.39 Husbands and wives, Part III. Exercise 8.33 presents a scatterplot displaying the relationship between husbands' and wives' ages in a random sample of 170 married couples in Britain, where both partners' ages are below 65 years. Given below is summary output of the least squares fit for predicting wife's age from husband's age.

(Intercept)	1.5740	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
age_husband	0.9112	1.1501	1.37	0.1730
				$d f=168$

(a) We might wonder, is the age difference between husbands and wives consistent across ages? If this were the case, then the slope parameter would be $\beta_{1}=1$. Use the information above to evaluate if there is strong evidence that the difference in husband and wife ages differs for different ages.
(b) Write the equation of the regression line for predicting wife's age from husband's age.
(c) Interpret the slope and intercept in context.
(d) Given that $R^{2}=0.88$, what is the correlation of ages in this data set?
(e) You meet a married man from Britain who is 55 years old. What would you predict his wife's age to be? How reliable is this prediction?
(f) You meet another married man from Britain who is 85 years old. Would it be wise to use the same linear model to predict his wife's age? Explain.

[^0]
[^0]: ${ }^{20}$ Source: R Dataset, stat.ethz.ch/R-manual/R-patched/library/datasets/html/trees.html.

