

Learning

Incomplete Data

Overview

Incomplete Data

- Multiple settings:
- Hidden variables
- Missing values
- Challenges
- Foundational - is the learning task well defined?
- Computational - how can we learn with incomplete data?

Why latent variables?

- Model sparsity

17 parameters

Why latent variables?

- Discovering clusters in data

Daphne Koller

Treating Missing Data

Sample sequence: $H, T, ?, ?, H, ?, H$

- Case I: A coin is tossed on a table, occasionally it drops and measurements are not taken

- Case II: A coin is tossed, but sometimes tails are not reported

$$
H+T+H T H
$$

We need to consider the missing data mechanism

Modeling Missing Data Mechanism

- $\mathbf{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ are randomvariables
- Sometimes missing
- $\mathbf{O}=\left\{\mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{n}}\right\}$ are observability variables
- Always observed
- $\mathrm{Y}=\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{n}\right\}$ new random variables
$-\operatorname{Val}\left(\mathrm{Y}_{\mathrm{i}}\right)=\operatorname{Val}\left(Y_{i}\right) \cup\{?\}$
- Always observed
$-Y_{i}$ is a deterministic function of X_{i} and O_{i} :

$$
Y_{i}=\left\{\begin{array}{cc}
X_{i} & O_{X_{i}}=o^{1} \\
? & o_{X_{i}}=o^{0}
\end{array}\right.
$$

Modeling Missing Data Mechanism

Case I

(random missing values)

(a) Random missing values

Case II
 (deliberate missing values)

- When can we ignore the missing data mechanism and focus only on the likelihood?
- Missing at Completely at Random (MAR)

A missing data model $P_{\text {missing }}$ is missing completely at random (MCAR) if $P_{\text {missing }} \vDash\left(X \perp O_{X}\right)$

Modeling Missing Data Mechanism

- When can we ignore the missing data mechanism and focus only on the likelihood?
- Missing at Random (MAR)

We say that a missing data model $P_{\text {missing }}$ is missing at random (MAR) if for all observations \boldsymbol{y} with $P_{\text {missing }}(\boldsymbol{y})>0$, and for all $\boldsymbol{x}_{\text {hidden }}^{\boldsymbol{y}} \in \operatorname{Val}\left(\boldsymbol{X}_{\text {hidden }}^{\boldsymbol{y}}\right)$, we have that

$$
P_{\text {missing }} \vDash\left(o_{X} \perp \boldsymbol{x}_{\text {hidden }}^{y} \mid \boldsymbol{x}_{o b s}^{y}\right)
$$

where o_{X} are the specific values of the observation variables given \boldsymbol{Y}.

Modeling Missing Data Mechanism

- When can we ignore the missing data mechanism and focus only on the likelihood?
- Missing at Random (MAR)

We say that a missing data model $P_{\text {missing }}$ is missing at random (MAR) if for all observations \boldsymbol{y} with $P_{\text {missing }}(\boldsymbol{y})>0$, and for all $\boldsymbol{x}_{\text {hidden }}^{\boldsymbol{y}} \in \operatorname{Val}\left(\boldsymbol{X}_{\text {hidden }}^{\boldsymbol{y}}\right)$, we have that

$$
P_{\text {missing }} \vDash\left(o_{X} \perp \boldsymbol{x}_{\text {hidden }}^{y} \mid \boldsymbol{x}_{\text {obs }}^{y}\right)
$$

where o_{X} are the specific values of the observation variables given \boldsymbol{Y}.

Identifiability

- Likelihood can have multiple global maxima
- Example:
- We can rename the values of the hidden variable H
- If H has two values, likelihood has two global maxima
- With many hidden variables, there can be an exponential number of global maxima
- Multiple local and global maxima can also occur with missing data (not only hidden variables)

Likelihood for Complete Data

Input Data:

\mathbf{X}	\mathbf{Y}
x^{0}	y^{0}
x^{0}	y^{1}
x^{1}	y^{0}

$\boldsymbol{P}(\boldsymbol{X})$	
x^{0}	x^{1}
$\theta_{\mathrm{x} 0}$	$\theta_{\mathrm{x} 1}$

- Likelihood decomposes by variables
- Likelihood decomposes within CPDs

Likelihood:
$L(D: \theta)=P(x[1], y[1]) P(x[2], y[2]) P(x[3], y[3])$ $=P\left(x^{0}, y^{0}\right) P\left(x^{0}, y^{1}\right) P\left(x^{1}, y^{0}\right)$

$=\theta_{x^{0}} \theta_{y^{0} \mid x^{0}} \theta_{x^{0}} \theta_{y^{1} \mid x^{0}} \theta_{x^{1}} \theta_{y^{0} \mid x^{1}}$| \boldsymbol{x} |
| :---: | | x^{0} | y^{0} | y^{1} |
| :---: | :---: | :---: |
| $\theta_{y 01 \times 0}$ | $\theta_{y_{1} 1 \times 0}$ | |
| x^{1} | $\theta_{y 001 \times 1}$ | $\theta_{y^{1} 1 \times 1}$ | $\theta_{x^{0}}^{M[x=0]}\left(1-\theta_{x^{0}}\right)^{M[x=1]} \times \quad$ Daphne Koller

$\theta_{y^{0} \mid x^{0}}^{M[y=0, x=0]}\left(1-\theta_{y^{0} \mid x^{0}}\right)^{M[y=1, x=0]} \times$
$\theta_{y^{0} \mid x^{1}}^{M[y=0, x=1]}\left(1-\theta_{y^{0} \mid x^{1}}\right)^{M[y=1, x=1]}$

Likelihood for Incomplete Data

Input Data:

\mathbf{X}	\mathbf{Y}
$?$	y^{0}
x^{0}	y^{1}
$?$	y^{0}

x^{0}	x^{1}
$\theta_{x 0}$	$\theta_{x 1}$

$$
=\theta_{x^{0}} \theta_{y^{1} \mid x^{0}} \sum_{x} \theta_{x^{x}} \theta_{y^{0} \mid x^{x}}
$$

Likelihood:

Multimodal Likelihood

Parameter Correlations

- Total of 8 data points
- Some X's unobserved

Summary

- Incomplete data arises often in practice
- Raises multiple challenges \& issues:
- The mechanism for missingness
- Identifiability
- Complexity of likelihood function

Likelihood with Incomplete Data

Daphne Koller

Gradient Ascent

- Follow gradient of likelihood w.r.t. parameters
- Line search \& conjugate gradient methods for fas \dagger convergence

Gradient Ascent

- Theorem:

Let \mathcal{G} be a Bayesian network structure over \mathcal{X}, and let $\mathcal{D}=$ $\{\boldsymbol{o}[1], \ldots, \boldsymbol{o}[M]\}$ be a partially observable data set. Let X be a variable and \boldsymbol{U} its parents in \mathcal{G}. Then

$$
\frac{\partial \ell(\boldsymbol{\theta}: \mathcal{D})}{\partial P(x \mid \boldsymbol{u})}=\frac{1}{P(x \mid \boldsymbol{u})} \sum_{m=1}^{M} P(x, \boldsymbol{u} \mid \boldsymbol{o}[m], \boldsymbol{\theta})
$$

- Requires computing $P\left(X_{i}, \boldsymbol{U}_{i} \mid d[m], \boldsymbol{\theta}\right)$ for all i,m
- Can be done with clique-tree algorithm, since $X_{i}, \boldsymbol{U}_{i}$ are in the same clique

Gradient Ascent Summary

- Need to run inference over each data instance at every iteration
- Pros ensure that parameters define legal
- Flexible, can be extended to non table CPDs
- Cons
- Constrained optimization: need tCPDs
- For reasonable convergence, need to combine with advanced methods (conjugate gradient, line search)

Expectation Maximization (EM)

- Special-purpose algorithm designed for optimizing likelihood functions
- Intuition
- Parameter estimation is easy given complete data
- Computing probability of missing data is "easy" (=inference) given parameters

Example

MLE estimate for $\theta_{d^{1} \mid c^{0}}$ if all data were fully observed:

$$
\hat{\theta}_{d^{1} \mid c^{0}}=\frac{M\left[d^{1}, c^{0}\right]}{M\left[c^{0}\right]}=\frac{\sum_{m=1}^{M} \mathbb{I}\left\{\xi[m]\langle D, C\rangle=\left\langle d^{1}, c^{0}\right\rangle\right\}}{\sum_{m=1}^{M} \mathbb{I}\left\{\xi[m]\langle C\rangle=c^{0}\right\}}
$$

Now assume we have a sample $\boldsymbol{o}=\left\langle a^{1}, ?, ?, d^{0}\right\rangle$
Four possible assignments of b, c
-If we knew the true assignment we could compute the MLE parameters
-If we knew the parameters we could compute the probability of each assingment

Parameters:

$\boldsymbol{\theta}_{a^{1}}$	$\boldsymbol{\theta}_{b^{1}}$
$\boldsymbol{\theta}_{d^{1} \mid c^{0}}$	$\boldsymbol{\theta}_{d^{1} \mid c^{1}}$
$\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{0}}$	$\boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}$
$\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}$	$\boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}$

Example

Assume we are given estimates for the parameters

$$
\begin{gathered}
\boldsymbol{o}=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
Q(B, C)=P\left(B, C \mid a^{1}, d^{0}, \boldsymbol{\theta}\right)
\end{gathered}
$$

Parameters:

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c^{0}}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{0}}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Example

Assume we are given estimates for the parameters

$$
\begin{gathered}
\boldsymbol{o}=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
Q(B, C)=P\left(B, C \mid a^{1}, d^{0}, \boldsymbol{\theta}\right) \\
\\
Q\left(\left\langle b^{1}, c^{1}\right\rangle\right)=0.3 \cdot 0.9 \cdot 0.2 \cdot 0.2 / 0.2196=0.0492 \\
Q\left(\left\langle b^{1}, c^{0}\right\rangle\right)=0.3 \cdot 0.9 \cdot 0.8 \cdot 0.9 / 0.2196=0.8852 \\
Q\left(\left\langle b^{0}, c^{1}\right\rangle\right)=0.3 \cdot 0.1 \cdot 0.6 \cdot 0.2 / 0.2196=0.0164 \\
Q\left(\left\langle b^{0}, c^{0}\right\rangle\right)=0.3 \cdot 0.1 \cdot 0.4 \cdot 0.9 / 0.2196=0.0492
\end{gathered}
$$

Another Example

Assume we are given estimates for the parameters

$$
\begin{gathered}
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle \\
Q^{\prime}(A, C)=P\left(A, D \mid b^{1}, d^{1}, \boldsymbol{\theta}\right)
\end{gathered}
$$

Parameters:

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a 0, b^{0}}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Another Example

Assume we are given estimates for the parameters

$$
\begin{gathered}
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle \\
Q^{\prime}(A, C)=P\left(A, D \mid b^{1}, d^{1}, \boldsymbol{\theta}\right) \\
Q^{\prime}\left(\left\langle a^{1}, c^{1}\right\rangle\right)=0.3 \cdot 0.9 \cdot 0.2 \cdot 0.8 / 0.1675=0.2579 \\
Q^{\prime}\left(\left\langle a^{1}, c^{0}\right\rangle\right)=0.3 \cdot 0.9 \cdot 0.8 \cdot 0.1 / 0.1675=0.1290 \\
Q^{\prime}\left(\left\langle a^{0}, c^{1}\right\rangle\right)=0.7 \cdot 0.9 \cdot 0.09 \cdot 0.8 / 0.1675=0.2708 \\
Q^{\prime}\left(\left\langle a^{0}, c^{0}\right\rangle\right)=0.7 \cdot 0.9 \cdot 0.91 \cdot 0.1 / 0.1675=0.3423
\end{gathered}
$$

This is like having four data instances with weights.

Parameters:

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c^{0}}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{0}}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Another Example

$$
\begin{gathered}
o=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle
\end{gathered}
$$

This is like having the data

$$
\begin{array}{cc}
\left\langle a^{1}, b^{1}, c^{1}, d^{0}\right\rangle & 0.0492 \\
\left\langle a^{1}, b^{1}, c^{0}, d^{0}\right\rangle & 0.8852 \\
\left\langle a^{1}, b^{0}, c^{1}, d^{0}\right\rangle & 0.0164 \\
\left\langle a^{1}, b^{0}, c^{0}, d^{0}\right\rangle & 0.0492
\end{array}
$$

$$
\begin{array}{ll}
\left\langle a^{1}, b^{1}, c^{1}, d^{1}\right\rangle & 0.2579 \\
\left\langle a^{1}, b^{1}, \mathrm{c}^{0}, d^{1}\right\rangle & 0.1290 \\
\left\langle a^{0}, b^{1}, \mathrm{c}^{1}, d^{1}\right\rangle & 0.2708 \\
\left\langle a^{0}, b^{1}, \mathrm{c}^{0}, d^{1}\right\rangle & 0.3423
\end{array}
$$

Parameters:

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a 0, b^{0}}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Another Example

$$
\begin{gathered}
o=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle
\end{gathered}
$$

This is like having the data

$$
\begin{array}{ll}
\left\langle a^{1}, b^{1}, c^{1}, d^{0}\right\rangle & 0.0492 \\
\left\langle a^{1}, b^{1}, c^{0}, d^{0}\right\rangle & 0.8852 \\
\left\langle a^{1}, b^{0}, c^{1}, d^{0}\right\rangle & 0.0164 \\
\left\langle a^{1}, b^{0}, c^{0}, d^{0}\right\rangle & 0.0492
\end{array}
$$

$$
\begin{array}{cc}
\left\langle a^{1}, b^{1}, c^{1}, d^{1}\right\rangle & 0.2579 \\
\left\langle a^{1}, b^{1}, c^{0}, d^{1}\right\rangle & 0.1290 \\
\left\langle a^{0}, b^{1}, c^{1}, d^{1}\right\rangle & 0.2708 \\
\left\langle a^{0}, b^{1}, c^{0}, d^{1}\right\rangle & 0.3423
\end{array}
$$

We can now compute expected counts,

Parameters:

$$
\bar{M}_{\boldsymbol{\theta}}[\boldsymbol{y}]=\sum_{m=1}^{M} \sum_{\boldsymbol{h}[m] \in \operatorname{Val}(\boldsymbol{H}[m])} Q(\boldsymbol{h}[m]) \mathbb{I}\{\xi[m]\langle\boldsymbol{Y}\rangle=\boldsymbol{y}\}
$$

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a 0}^{0}, b^{0}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Another Example

$$
\begin{gathered}
o=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle
\end{gathered}
$$

This is like having the data

$$
\begin{array}{ll}
\left\langle a^{1}, b^{1}, c^{1}, d^{0}\right\rangle & 0.0492 \\
\left\langle a^{1}, b^{1}, c^{0}, d^{0}\right\rangle & 0.8852 \\
\left\langle a^{1}, b^{0}, c^{1}, d^{0}\right\rangle & 0.0164 \\
\left\langle a^{1}, b^{0}, c^{0}, d^{0}\right\rangle & 0.0492
\end{array}
$$

$$
\begin{array}{ll}
\left\langle a^{1}, b^{1}, c^{1}, d^{1}\right\rangle & 0.2579 \\
\left\langle a^{1}, b^{1}, c^{0}, d^{1}\right\rangle & 0.1290 \\
\left\langle a^{0}, b^{1}, \mathrm{c}^{1}, d^{1}\right\rangle & 0.2708 \\
\left\langle a^{0}, b^{1}, \mathrm{c}^{0}, d^{1}\right\rangle & 0.3423
\end{array}
$$

We can now compute expected counts,

Parameters:

$$
\bar{M}_{\boldsymbol{\theta}}[\boldsymbol{y}]=\sum_{m=1}^{M} \sum_{\boldsymbol{h}[m] \in \operatorname{Val}(\boldsymbol{H}[m])} Q(\boldsymbol{h}[m]) \mathbb{M}\{\xi[m]\langle\boldsymbol{Y}\rangle=\boldsymbol{y}\}
$$

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a}^{0}, b^{0}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

Another Example

$$
\begin{gathered}
o=\left\langle a^{1}, ?, ?, d^{0}\right\rangle \\
o^{\prime}=\left\langle ?, b^{1}, ?, d^{1}\right\rangle
\end{gathered}
$$

We can now compute expected counts,

$$
\begin{array}{ccc}
\bar{M}_{\boldsymbol{\theta}}[\boldsymbol{y}]=\sum_{m=1}^{M} \sum_{\boldsymbol{h}[m] \in \operatorname{Val}(\boldsymbol{H}[m])} Q(\boldsymbol{h}[m]) \mathbb{M}\{\xi[m]\langle\boldsymbol{Y}\rangle=\boldsymbol{y}\} & \\
\bar{M}_{\boldsymbol{\theta}}\left[d^{1}, c^{0}\right]=Q^{\prime}\left(\left\langle d^{1}, c^{0}\right\rangle\right)+Q^{\prime}\left(\left\langle d^{1}, c^{0}\right\rangle\right)=0.1290+0.3423=0.4713 & \begin{array}{l}
\text { wrong } \\
\text { formula ir }
\end{array} \\
\bar{M}_{\boldsymbol{\theta}}\left[c^{0}\right]=Q\left(\left\langle b^{1}, c^{0}\right\rangle\right)+Q\left(\left\langle b^{0}, c^{0}\right\rangle\right)+Q^{\prime}\left(\left\langle a^{1}, c^{0}\right\rangle\right)+Q^{\prime}\left(\left\langle a^{0}, c^{0}\right\rangle\right) & \text { the book } \\
& =0.8852+0.0492+0.1290+0.3423=1.4057 &
\end{array}
$$

wrong formula in the book

Once you have the expected counts, you can do MLE estimation and update the parameters

$$
\bar{\theta}_{d^{1} \mid c^{0}}=\frac{\bar{M}_{\theta}\left[d^{1}, c^{0}\right]}{\bar{M}_{\theta}\left[c^{0}\right]}
$$

$$
\begin{gathered}
\boldsymbol{\theta}_{a^{1}}=0.3 \quad \boldsymbol{\theta}_{b^{1}}=0.9 \\
\boldsymbol{\theta}_{d^{1} \mid c}=0.1 \boldsymbol{\theta}_{d^{1} \mid c^{1}}=0.8 \\
\boldsymbol{\theta}_{c^{1} \mid a 0}^{0}, b^{0}=0.83 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{0}}=0.6 \\
\boldsymbol{\theta}_{c^{1} \mid a^{0}, b^{1}}=0.09 \boldsymbol{\theta}_{c^{1} \mid a^{1}, b^{1}}=0.2
\end{gathered}
$$

EM Overview

- Pick a starting point for parameters
- Iterate:
- E-step (Expectation): "Complete" the data using current parameters
- M-step (Maximization): Estimate parameters relative to data completion
- Guaranteed to improve $L(\theta: D)$ at each iteration

Example: Clustering

Clustering methods

- hard clustering: clusters do not overlap
- soft clustering: clusters may overlap

Mixture models

- probabilistically-grounded way of doing soft clustering
- each cluster: a generative model (Gaussian or multinomial)
- parameters (e.g. mean/covariance are unknown)

Example: Gaussian Mixture models

- Observations $x_{1} \ldots x_{n}$
- $K=2$ Gaussians with unknown μ, σ^{2}
- estimation trivial if we know the source of each observation

Example: Gaussian Mixture models

- Observations $x_{1} \ldots x_{n}$
- $K=2$ Gaussians with unknown μ, σ^{2}
- estimation trivial if we know the source of each observation

$$
\begin{gathered}
\bigcirc \rho_{b} \bigcirc \frac{x_{1}+x_{2}+\cdots+x_{n_{b}}}{n_{b}} \\
\sigma_{b}^{2}=\frac{\left(x_{1}-\mu_{1}\right)^{2}+\cdots+\left(x_{n}-\mu_{n}\right)^{2}}{n_{b}}
\end{gathered}
$$

Example: Gaussian Mixture models

- Observations x_{1}, \ldots, x_{n}
- $K=2$ Gaussians with unknown μ, σ^{2}
- estimation trivial if we know the source of each observation
- What if we don't know the source?
- If we knew parameters of the Gaussians $\left(\mu, \sigma^{2}\right)$, we can guess whether point is more likely to be a or b.

$$
\begin{align*}
P\left(b \mid x_{i}\right) & =\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)} \tag{0}\\
P\left(x_{i} \mid b\right) & =\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{b}\right)^{2}}{2 \sigma_{b}^{2}}\right) \tag{0}
\end{align*}
$$000000

EM for GMMs

- Chicken and egg problem
- need $\left(\mu_{a}, \sigma_{a}^{2}\right)$ and ($\left.\mu_{b}, \sigma_{b}{ }^{2}\right)$ to guess source of points
- need to know source to estimate ($\mu_{a}, \sigma_{a}{ }^{2}$) and ($\mu_{b}, \sigma_{b}{ }^{2}$)
- EM algorithm
- start with two randomly placed Gaussians $\left(\mu_{a} \sigma_{a}^{2}\right),\left(\mu_{b}, \sigma_{b}{ }^{2}\right)$
- for each point: $P\left(b \mid x_{i}\right)=$ does it look like it came from b ?
- adjust $\left(\mu_{a^{\prime}}, \sigma_{a}{ }^{2}\right)$ and $\left(\mu_{b}, \sigma_{b}{ }^{2}\right)$ to fit points assigned to them

Example: EM for 1-D GMMs

$$
\begin{gathered}
P\left(x_{i} \mid b\right)=\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{s}\right)^{2}}{2 \sigma_{b}^{2}}\right) \\
b_{i}=P\left(b \mid x_{i}\right)=\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)} \\
a_{i}=P\left(a \mid x_{i}\right)=1-b_{i}
\end{gathered}
$$

Example: EM for 1-D GMMs

$$
\begin{gathered}
P\left(x_{i} \mid b\right)=\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{s}\right)^{2}}{2 \sigma_{b}^{2}}\right) \\
b_{i}=P\left(b \mid x_{i}\right)=\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)} \\
a_{i}=P\left(a \mid x_{i}\right)=1-b_{i}
\end{gathered}
$$

Example: EM for 1-D GMMs

$$
\begin{gathered}
P\left(x_{i} \mid b\right)=\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{s}\right)^{2}}{2 \sigma_{b}^{2}}\right) \\
b_{i}=P\left(b \mid x_{i}\right)=\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)}
\end{gathered}
$$

$$
\begin{gathered}
a_{i}=P\left(a \mid x_{i}\right)=1-b_{i} \\
\mu_{b}=\frac{b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\sigma_{b}^{2}=\frac{b_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+b_{n}\left(x_{n}-\mu_{n}\right)^{2}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\mu_{a}=\frac{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n_{n}}}{a_{1}+a_{2}+\cdots+a_{n}} \\
\sigma_{a}^{2}=\frac{a_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+a_{n}\left(x_{n}-\mu_{n}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}
\end{gathered}
$$

Example: EM for 1-D GMMs

$$
\begin{gathered}
P\left(x_{i} \mid b\right)=\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{s}\right)^{2}}{2 \sigma_{b}^{2}}\right) \\
b_{i}=P\left(b \mid x_{i}\right)=\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)}
\end{gathered}
$$

$$
\begin{gathered}
a_{i}=P\left(a \mid x_{i}\right)=1-b_{i} \\
\mu_{b}=\frac{b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\sigma_{b}^{2}=\frac{b_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+b_{n}\left(x_{n}-\mu_{n}\right)^{2}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\mu_{a}=\frac{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n_{n}}}{a_{1}+a_{2}+\cdots+a_{n}} \\
\sigma_{a}^{2}=\frac{a_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+a_{n}\left(x_{n}-\mu_{n}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}
\end{gathered}
$$

Example: EM for 1-D GMMs

$$
\begin{gathered}
P\left(x_{i} \mid b\right)=\frac{1}{\sqrt{2 \pi \sigma_{b}^{2}}} \exp \left(-\frac{\left(x_{i}-\mu_{s}\right)^{2}}{2 \sigma_{b}^{2}}\right) \\
b_{i}=P\left(b \mid x_{i}\right)=\frac{P\left(x_{i} \mid b\right) P(b)}{P\left(x_{i} \mid b\right) P(b)+P\left(x_{i} \mid a\right) P(a)}
\end{gathered}
$$

$$
\begin{gathered}
a_{i}=P\left(a \mid x_{i}\right)=1-b_{i} \\
\mu_{b}=\frac{b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\sigma_{b}^{2}=\frac{b_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+b_{n}\left(x_{n}-\mu_{n}\right)^{2}}{b_{1}+b_{2}+\cdots+b_{n}} \\
\mu_{a}=\frac{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n_{n}}}{a_{1}+a_{2}+\cdots+a_{n}} \\
\sigma_{a}^{2}=\frac{a_{1}\left(x_{1}-\mu_{1}\right)^{2}+\cdots+a_{n}\left(x_{n}-\mu_{n}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}
\end{gathered}
$$

Expectation-Maximization

Iterate until convergence:
On the t - th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}(t), \mu_{2}(t) \ldots \mu_{c}(t)\right\} \quad \begin{gathered}
\text { Just evaluate a } \\
\text { Gaussian at } x_{k}
\end{gathered}
$$

E-step: Compute "expected" classes of all datapoints for each class

$$
\mathrm{P}\left(z_{i} \mid x_{k}, \lambda_{t}\right)=\frac{\mathrm{p}\left(x_{k} \mid z_{i}, \lambda_{t}\right) \mathrm{P}\left(z_{i} \mid \lambda_{t}\right)}{\mathrm{p}\left(x_{k} \mid \lambda_{t}\right)}=\frac{\mathrm{p}\left(x_{k} \mid z_{i}, \mu_{i}(t), \sigma^{2} \mathbf{I}\right) p_{i}(t)}{\sum_{j=1}^{c} \mathrm{p}\left(x_{k} \mid z_{j}, \mu_{j}(t), \sigma^{2} \mathbf{I}\right) p_{j}(t)}
$$

M-step: Estimate $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(z_{i} \mid x_{k}, \lambda_{t}\right) x_{k}}{\sum_{k} \mathrm{P}\left(z_{i} \mid x_{k}, \lambda_{t}\right)}
$$

Example: Gaussian Mixture Models

Example: Gaussian Mixture Models

EM Summary

- Need to run inference over each data instance at every iteration
- Pros
- Easy to implement on top of MLE for complete data
- Makes rapid progress, especially in early iterations
- Cons
- Convergence slows down at later iterations

