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Incomplete Data

• Multiple settings:
– Hidden variables
– Missing values

• Challenges
– Foundational – is the learning task well defined?
– Computational – how can we learn with  

incomplete data?
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Why latent variables?

• Model sparsity

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

59 parameters17 parameters
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Why latent variables?

• Discovering clusters in data
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Treating Missing Data

Sample sequence: H,T,?,?,H,?,H

• Case I: A coin is tossed on a table, occasionally  it 
drops and measurements are not taken

• Case II: A coin is tossed, but sometimes tails  are not
reported

We need to consider the missing data mechanism
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Modeling Missing Data Mechanism

• X = {X1,...,Xn} are randomvariables
- Sometimes missing

• O = {O1,...,On} are observability variables
– Always observed

• Y = {Y1,...,Yn} new random variables
– Val(Yi) = 𝑉𝑎𝑙 𝑌𝑖 ∪ {? }
– Always observed
– Yi is a deterministic function of Xi and Oi:

Daphne Koller𝑌! = #
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Modeling Missing Data Mechanism
Case I

(random missing values)
Case II

(deliberate missing values)

• When can we ignore the missing data  mechanism and focus only 
on the likelihood?

• Missing at Completely at Random (MAR)

A missing data model 𝑃missing is missing completely at random (MCAR) if 
𝑃missing ⊨ 𝑿 ⊥ 𝑂𝑿



Modeling Missing Data Mechanism

• When can we ignore the missing data  mechanism and focus only 
on the likelihood?

• Missing at Random (MAR)

We say that a missing data model 𝑃missing is missing at random (MAR) if for all 

observations 𝒚 with 𝑃missing (𝒚) > 0, and for all 𝒙hidden
𝒚 ∈ Val 𝑿hidden

𝒚 , we have 
that

𝑃missing ⊨ 𝑜𝑿 ⊥ 𝒙hidden
𝒚 ∣ 𝒙'()

𝒚

where 𝑜𝑿 are the specific values of the observation variables given 𝒀.



Modeling Missing Data Mechanism

• When can we ignore the missing data  mechanism and focus only 
on the likelihood?

• Missing at Random (MAR)

We say that a missing data model 𝑃missing is missing at random (MAR) if for all 

observations 𝒚 with 𝑃missing (𝒚) > 0, and for all 𝒙hidden
𝒚 ∈ Val 𝑿hidden

𝒚 , we have 
that

𝑃missing ⊨ 𝑜𝑿 ⊥ 𝒙hidden
𝒚 ∣ 𝒙'()

𝒚

where 𝑜𝑿 are the specific values of the observation variables given 𝒀.

𝐿(𝜽:𝒟) = 𝜃""
* +"" 1 − 𝜃""

* +"#

𝜃"$
* +$" 1 − 𝜃"$

* +$#

𝜓,%$∣+""
* +"",+"" /* +"",+$# 1 − 𝜓,%$∣0""

* +"",+$$

𝜓,%$∣0"#
* +"#,+$" /* +"#,+$# 1 − 𝜓,%$∣0"#

* +"#,+$$



Identifiability

• Likelihood can have multiple global maxima

• Example:
– We can rename the values of the hidden variable H

H

Y

– If H has two values, likelihood has two global maxima

• With many hidden variables, there can be an  
exponential number of global maxima

• Multiple local and global maxima can also occur with
missing data (not only hidden variables)

Daphne Koller



Likelihood for Complete Data

X

X Y
x0 y0

x0 y1

x1 y0

x0 x1

qx0 qx1

Input Data:

§ Likelihood decomposes by variables

X
P(Y|X)
y0 y1

x0
x1

qy0|x0 qy1|x0

qy0|x1 qy1|x1

Y

L ( D : q) = 𝑃 ( 𝑥[1], 𝑦[1]) 𝑃( 𝑥[2 ], 𝑦[2 ]) 𝑃( 𝑥[3], 𝑦[3])

= 𝑃 𝑥$, 𝑦$ 𝑃 𝑥$, 𝑦# 𝑃(𝑥#, 𝑦$)

= 𝜃0#𝜃+#|0#𝜃0#𝜃+"|0#𝜃0"𝜃+#|0" =

𝜃!!
"[!$%] 1 − 𝜃!! "[!$']×

𝜃(!|!!
"[($%,!$%] 1 − 𝜃(!|!!

"[($',!$%]
×

𝜃(!|!"
"[($%,!$'] 1 − 𝜃(!|!"

"[($',!$']

Likelihood:
§ Likelihood decomposes within CPDs
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Likelihood for Incomplete Data

X

X Y

? y0

x0 y1

? y0

x0 x1

qx0 qx1

Input Data:

§ Likelihood does not decompose by variables

§ Likelihood does not decompose within CPDs

§ Computing likelihood requires inference!

X
P(Y|X)
y0 y1

x0
x1

qy0|x0 qy1|x0

qy0|x1 qy1|x1

Y

Likelihood:
L ( D : q )
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= 𝑃 𝑦$ 𝑃 𝑥$, 𝑦# 𝑃(𝑦$)

= 𝜃0#𝜃+"|0#.
0

𝜃0&𝜃+#|0&



Multimodal Likelihood
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Parameter Correlations
• Total of 8 data points
• Some X’s unobserved



Summary

• Incomplete data arises often in practice
• Raises multiple challenges & issues:
– The mechanism for missingness
– Identifiability
– Complexity of likelihood function
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Likelihood with Incomplete Data
L(
D|
Q
)

Q
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Gradient Ascent

• Follow gradient of likelihood w.r.t. parameters
• Line search & conjugate gradient methods for fast  

convergence

L(
D|
Q
)

Q

Daphne Koller



Gradient Ascent
• Theorem:

• Requires computing 𝑃(𝑋𝑖, 𝑼𝑖|𝑑[𝑚], 𝜽) for all
𝑖,𝑚

• Can be done with clique-tree algorithm, since  
𝑋𝑖, 𝑼𝑖 are in the same clique

Daphne Koller

Let 𝒢 be a Bayesian network structure over 𝒳, and let 𝒟 =
{𝒐[1], … , 𝒐[𝑀]} be a partially observable data set. Let 𝑋 be a variable 
and 𝑼 its parents in 𝒢. Then

𝜕ℓ(𝜽:𝒟)
𝜕𝑃(𝑥 ∣ 𝒖)

=
1

𝑃(𝑥 ∣ 𝒖)
:
/01

2

𝑃(𝑥, 𝒖 ∣ 𝒐[𝑚], 𝜽).



Gradient Ascent Summary

• Need to run inference over each data 
instance  at every iteration

• Pros ensure that  parameters define legal
– Flexible, can be extended to non table CPDs

• Cons
– Constrained optimization: need tCPDs
– For reasonable convergence, need to combine 

with  advanced methods (conjugate gradient, 
line search)
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Expectation Maximization (EM)

• Special-purpose algorithm designed for  
optimizing likelihood functions

• Intuition
– Parameter estimation is easy given complete data
– Computing probability of missing data is “easy”  

(=inference) given parameters
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Example

Now assume we have  a sample 𝒐 = 𝑎#, ? , ? , 𝑑$

𝜃̂2!∣3" =
𝑀 𝑑#, 𝑐$

𝑀 𝑐$ =
∑45#* 𝕀 𝜉[𝑚]⟨𝐷, 𝐶⟩ = 𝑑#, 𝑐$

∑45#* 𝕝 𝜉[𝑚]⟨𝐶⟩ = 𝑐$

MLE estimate for 𝜃2!∣3" if all data were fully observed:

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Four possible assignments of 𝑏, 𝑐

-If we knew the true assignment we could compute the 
MLE parameters

-If we knew the parameters we could compute the 
probability of each assingment

Parameters:



Example

𝒐 = 𝑎#, ? , ? , 𝑑$

Assume we are given estimates for the parameters

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

𝑄(𝐵, 𝐶) = 𝑃 𝐵, 𝐶 ∣ 𝑎#, 𝑑$, 𝜽



Example

𝒐 = 𝑎#, ? , ? , 𝑑$

Assume we are given estimates for the parameters

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

𝑄(𝐵, 𝐶) = 𝑃 𝐵, 𝐶 ∣ 𝑎#, 𝑑$, 𝜽

𝑄 𝑏#, 𝑐# = 0.3 ⋅ 0.9 ⋅ 0.2 ⋅ 0.2/0.2196 = 0.0492
𝑄 𝑏#, 𝑐$ = 0.3 ⋅ 0.9 ⋅ 0.8 ⋅ 0.9/0.2196 = 0.8852
𝑄 𝑏$, 𝑐# = 0.3 ⋅ 0.1 ⋅ 0.6 ⋅ 0.2/0.2196 = 0.0164
𝑄 𝑏$, 𝑐$ = 0.3 ⋅ 0.1 ⋅ 0.4 ⋅ 0.9/0.2196 = 0.0492



Another Example

𝑜7 = ? , 𝑏#, ? , 𝑑#

Assume we are given estimates for the parameters

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

𝑄′ 𝐴, 𝐶 = 𝑃 𝐴, 𝐷 ∣ 𝑏#, 𝑑#, 𝜽



Another Example

𝑜7 = ? , 𝑏#, ? , 𝑑#

Assume we are given estimates for the parameters

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

𝑄′ 𝐴, 𝐶 = 𝑃 𝐴, 𝐷 ∣ 𝑏#, 𝑑#, 𝜽

𝑄7 𝑎#, 𝑐# = 0.3 ⋅ 0.9 ⋅ 0.2 ⋅ 0.8/0.1675 = 0.2579
𝑄7 𝑎#, 𝑐$ = 0.3 ⋅ 0.9 ⋅ 0.8 ⋅ 0.1/0.1675 = 0.1290
𝑄7 𝑎$, 𝑐# = 0.7 ⋅ 0.9 ⋅ 0.09 ⋅ 0.8/0.1675 = 0.2708
𝑄7 𝑎$, 𝑐$ = 0.7 ⋅ 0.9 ⋅ 0.91 ⋅ 0.1/0.1675 = 0.3423

This is like having four data instances 
with  weights.



𝑎#, 𝑏#, c#, 𝑑$ 0.0492
𝑎#, 𝑏#, c$, 𝑑$ 0.8852
𝑎#, 𝑏$, c#, 𝑑$ 0.0164
𝑎#, 𝑏$, c$, 𝑑$ 0.0492

𝑎#, 𝑏#, c#, 𝑑# 0.2579
𝑎#, 𝑏#, c$, 𝑑# 0.1290
𝑎$, 𝑏#, c#, 𝑑# 0.2708
𝑎$, 𝑏#, c$, 𝑑# 0.3423

Another Example
𝑜 = 𝑎#, ? , ? , 𝑑$
𝑜7 = ? , 𝑏#, ? , 𝑑#

This is like having the data

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:



𝑎#, 𝑏#, c#, 𝑑$ 0.0492
𝑎#, 𝑏#, c$, 𝑑$ 0.8852
𝑎#, 𝑏$, c#, 𝑑$ 0.0164
𝑎#, 𝑏$, c$, 𝑑$ 0.0492

𝑎#, 𝑏#, c#, 𝑑# 0.2579
𝑎#, 𝑏#, c$, 𝑑# 0.1290
𝑎$, 𝑏#, c#, 𝑑# 0.2708
𝑎$, 𝑏#, c$, 𝑑# 0.3423

Another Example
𝑜 = 𝑎#, ? , ? , 𝑑$
𝑜7 = ? , 𝑏#, ? , 𝑑#

This is like having the data

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

We can now compute expected counts,
‾𝑀𝜽[𝒚] = ∑45#* ∑𝒉[4]∈=>?(𝑯[4])𝑄(𝒉[𝑚])𝕀{𝜉[𝑚]⟨𝒀⟩ = 𝒚}



𝑎#, 𝑏#, c#, 𝑑$ 0.0492
𝑎#, 𝑏#, c$, 𝑑$ 0.8852
𝑎#, 𝑏$, c#, 𝑑$ 0.0164
𝑎#, 𝑏$, c$, 𝑑$ 0.0492

𝑎#, 𝑏#, c#, 𝑑# 0.2579
𝑎#, 𝑏#, c$, 𝑑# 0.1290
𝑎$, 𝑏#, c#, 𝑑# 0.2708
𝑎$, 𝑏#, c$, 𝑑# 0.3423

Another Example
𝑜 = 𝑎#, ? , ? , 𝑑$
𝑜7 = ? , 𝑏#, ? , 𝑑#

This is like having the data

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

We can now compute expected counts,
‾𝑀𝜽[𝒚] = ∑45#* ∑𝒉[4]∈=>?(𝑯[4])𝑄(𝒉[𝑚])𝕀{𝜉[𝑚]⟨𝒀⟩ = 𝒚}



Another Example
𝑜 = 𝑎#, ? , ? , 𝑑$
𝑜7 = ? , 𝑏#, ? , 𝑑#

𝜽6! = 0.3 𝜽(! = 0.9
𝜽2!∣3" = 0.1 𝜽2!∣3! = 0.8

𝜽3!∣6",(" = 0.83 𝜽3!∣6!,(" = 0.6
𝜽3!∣6",(! = 0.09 𝜽3!∣6!,(! = 0.2

Parameters:

We can now compute expected counts,
‾𝑀𝜽[𝒚] = ∑45#* ∑𝒉[4]∈=>?(𝑯[4])𝑄(𝒉[𝑚])𝕀{𝜉[𝑚]⟨𝒀⟩ = 𝒚}

Once you have the expected counts,
you can do MLE estimation and update the parameters

\𝑀𝜽 𝑐$ = 𝑄 𝑏#, 𝑐$ + 𝑄 𝑏$, 𝑐$ + 𝑄7 𝑎#, 𝑐$ + 𝑄7 𝑎$, 𝑐$
= 0.8852 + 0.0492 + 0.1290 + 0.3423 = 1.4057

\𝑀𝜽 𝑑#, 𝑐$ = 𝑄7 𝑑#, 𝑐$ + 𝑄7 𝑑#, 𝑐$ = 0.1290 + 0.3423 = 0.4713

𝜃̅2!∣3" =
\𝑀𝜽 𝑑#, 𝑐$
\𝑀𝜽 𝑐$

wrong 
formula in 
the book



EM Overview

• Pick a starting point for parameters
• Iterate:
– E-step (Expectation): “Complete” the data  using 

current parameters
– M-step (Maximization): Estimate  parameters 

relative to data completion
• Guaranteed to improve 𝐿(𝜃 ∶ 𝐷) at each  

iteration
Daphne Koller



Example: Clustering

Clustering methods 
- hard clustering: clusters do not overlap
- soft clustering: clusters may overlap

Mixture models
- probabilistically-grounded way of doing soft clustering
- each cluster: a generative model (Gaussian or 

multinomial)
- parameters (e.g. mean/covariance are unknown)

C

𝑋# 𝑋C 𝑋D



Example: Gaussian Mixture models
• Observations 𝑥#…𝑥D

• 𝐾 = 2 Gaussians with unknown 𝜇, 𝜎C

• estimation trivial if we know the source of each observation



Example: Gaussian Mixture models
• Observations 𝑥#…𝑥D

• 𝐾 = 2 Gaussians with unknown 𝜇, 𝜎C

• estimation trivial if we know the source of each observation

𝜇( =
𝑥# + 𝑥C +⋯+ 𝑥D#

𝑛(

𝜎(C =
𝑥# − 𝜇# C +⋯+ 𝑥D − 𝜇D C

𝑛(



Example: Gaussian Mixture models
• Observations 𝑥#, … , 𝑥D

• 𝐾 = 2 Gaussians with unknown 𝜇, 𝜎C

• estimation trivial if we know the source of each observation

• What if we don't know the source?
• If we knew parameters of the Gaussians 𝜇, 𝜎C , we can guess whether point 

is more likely to be 𝑎 or 𝑏.

𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇( C

2𝜎(C



EM for GMMs
• Chicken and egg problem

• need 𝜇6 , 𝜎6 C and 𝜇( , 𝜎( C to guess source of points
• need to know source to estimate 𝜇6 , 𝜎6 C and 𝜇( , 𝜎( C

• EM algorithm
• start with two randomly placed Gaussians 𝜇6$𝜎6C , 𝜇( , 𝜎( C

• for each point: 𝑃 𝑏 ∣ 𝑥! = does it look like it came from 𝑏 ?
• adjust 𝜇6$ , 𝜎6 C and 𝜇( , 𝜎( C to fit points assigned to them



Example: EM for 1-D GMMs

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇) C

2𝜎(C

𝑏! = 𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑎! = 𝑃 𝑎 ∣ 𝑥! = 1 − 𝑏!



Example: EM for 1-D GMMs

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇) C

2𝜎(C

𝑏! = 𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑎! = 𝑃 𝑎 ∣ 𝑥! = 1 − 𝑏!



Example: EM for 1-D GMMs

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇) C

2𝜎(C

𝑏! = 𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑎! = 𝑃 𝑎 ∣ 𝑥! = 1 − 𝑏!

𝜇( =
𝑏#𝑥# + 𝑏C𝑥C +⋯+ 𝑏D𝑥D

𝑏# + 𝑏C +⋯+ 𝑏D

𝜎(C =
𝑏# 𝑥# − 𝜇# C +⋯+ 𝑏D 𝑥D − 𝜇D C

𝑏# + 𝑏C +⋯+ 𝑏D

𝜇6 =
𝑎#𝑥# + 𝑎C𝑥C +⋯+ 𝑎D𝑥D%

𝑎# + 𝑎C +⋯+ 𝑎D

𝜎6C =
𝑎# 𝑥# − 𝜇# C +⋯+ 𝑎D 𝑥D − 𝜇D C

𝑎# + 𝑎C +⋯+ 𝑎D



Example: EM for 1-D GMMs

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇) C

2𝜎(C

𝑏! = 𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑎! = 𝑃 𝑎 ∣ 𝑥! = 1 − 𝑏!

𝜇( =
𝑏#𝑥# + 𝑏C𝑥C +⋯+ 𝑏D𝑥D

𝑏# + 𝑏C +⋯+ 𝑏D

𝜎(C =
𝑏# 𝑥# − 𝜇# C +⋯+ 𝑏D 𝑥D − 𝜇D C

𝑏# + 𝑏C +⋯+ 𝑏D

𝜇6 =
𝑎#𝑥# + 𝑎C𝑥C +⋯+ 𝑎D𝑥D%

𝑎# + 𝑎C +⋯+ 𝑎D

𝜎6C =
𝑎# 𝑥# − 𝜇# C +⋯+ 𝑎D 𝑥D − 𝜇D C

𝑎# + 𝑎C +⋯+ 𝑎D



Example: EM for 1-D GMMs

𝑃 𝑥! ∣ 𝑏 =
1

2𝜋𝜎(C
ex p −

𝑥! − 𝜇) C

2𝜎(C

𝑏! = 𝑃 𝑏 ∣ 𝑥! =
𝑃 𝑥! ∣ 𝑏 𝑃 𝑏

𝑃 𝑥! ∣ 𝑏 𝑃 𝑏 + 𝑃 𝑥! ∣ 𝑎 𝑃 𝑎

𝑎! = 𝑃 𝑎 ∣ 𝑥! = 1 − 𝑏!

𝜇( =
𝑏#𝑥# + 𝑏C𝑥C +⋯+ 𝑏D𝑥D

𝑏# + 𝑏C +⋯+ 𝑏D

𝜎(C =
𝑏# 𝑥# − 𝜇# C +⋯+ 𝑏D 𝑥D − 𝜇D C

𝑏# + 𝑏C +⋯+ 𝑏D

𝜇6 =
𝑎#𝑥# + 𝑎C𝑥C +⋯+ 𝑎D𝑥D%

𝑎# + 𝑎C +⋯+ 𝑎D

𝜎6C =
𝑎# 𝑥# − 𝜇# C +⋯+ 𝑎D 𝑥D − 𝜇D C

𝑎# + 𝑎C +⋯+ 𝑎D



Expectation-Maximization
Iterate until convergence:
On the 𝑡 − th iteration let our estimates be

𝜆! = 𝜇"(𝑡), 𝜇#(𝑡)…𝜇$(𝑡)
Just evaluate a
Gaussian at 𝑥%

E-step: Compute “expected" classes of all datapoints for each class

P 𝑧& ∣ 𝑥%, 𝜆! =
p 𝑥% ∣ 𝑧&, 𝜆! P 𝑧& ∣ 𝜆!

p 𝑥% ∣ 𝜆!
=

p 𝑥% ∣ 𝑧&, 𝜇&(𝑡), 𝜎#𝐈 𝑝&(𝑡)
∑'("$ p 𝑥% ∣ 𝑧', 𝜇'(𝑡), 𝜎#𝐈 𝑝'(𝑡)

M-step: Estimate 𝝁 given our data's class membership distributions

𝜇&(𝑡 + 1) =
∑% P 𝑧& ∣ 𝑥%, 𝜆! 𝑥%
∑% P 𝑧& ∣ 𝑥%, 𝜆!



Example: Gaussian Mixture Models



Example: Gaussian Mixture Models



EM Summary

• Need to run inference over each data  
instance at every iteration

• Pros
– Easy to implement on top of MLE for complete  

data
– Makes rapid progress, especially in early  

iterations
• Cons
– Convergence slows down at later iterations

Daphne Koller


