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Recap: Hypothesis Tests
• Identify the research question, formalize in terms of parameters.

• We want to make a decision on whether we think 𝐻! or 𝐻" is correct.

• Find a statistics, compute the distribution of the statistic under the null.

• p-value: The probability of observing data at least as favorable to the 
alternative hypothesis as our current data set, if the null hypothesis is true.

• If the p-value is low (lower than the significance level, 𝛼, which is usually 
5% ) we say that it would be very unlikely to observe the data if the null 
hypothesis were true, and hence reject 𝐻!.

• If the p-value is high (higher than the significance level, 𝛼 ) then it is pretty 
likely to observe the data even if the null hypothesis were true, so we do not 
reject 𝐻!.

● We never accept 𝐻! since we're not in the business of trying to prove it!



Example: Student Grades

● Last year, the average grade of students the first midterm of applied 

statistics was 68.7.

This year, the first 20 students that were graded have an average grade 

of 63.7 with a standard deviation of 12.

Is student performance different this year?

• 𝐻#: Average student performance is the same as last year

• 𝐻": Average student performance is different than last year



Example

● Last year, the average grade of students the first midterm of applied 

statistics was 68.7.

This year, the first 20 students that were graded have an average grade 

of 63.7 with a sample standard deviation of 12.

Is student performance different this year?

• 𝐻#: 𝜇 = 68.7

• 𝐻": 𝜇 ≠ 68.7



Conditions

● Independence: We are told to assume that cases (rows) are 
independent.

● Normality : The distribution of the sample mean is nearly normal 
(CLT)
● Sample size / skew: Sample size is not very small, 

distribution of grades does not appear extremely skewed.



Review: why do we need a large sample?

As long as observations are independent, and the population
distribution is not extremely skewed, a large sample would ensure
that...

● the sampling distribution of the mean is nearly normal
● the estimate of the standard error, as      , is reliable



The normality condition
● The CLT, which states that sampling distributions will be nearly 

normal, hold true for any sample size as long as the population 
distribution is nearly normal

● While this is a helpful special case, it’s inherently difficult to
verify normality in small data sets

However, if we believe our original disstribution is normal, then

𝑍 =
𝑋! − 𝜇

𝑆𝐸 = 𝜎/ 𝑛
∼ 𝑁(0, 1)

We do not know 𝜎, and 𝑛 is too small to get a reliable estimate using 𝑠.



Find the test statistic
Test statistic for inference on a small sample mean

The test statistic for inference on a small sample (𝑛 < 30) mean is 
the 𝑇 statistic with 𝑑𝑓 = 𝑛 − 1

Under the null, 𝑇"# ∼ 𝑡!$%

𝑇./ =
𝑋0 − 𝜇
𝑠/ 𝑛



Recap: Inference using the 𝒕-distribution  

● In context:
● 𝑛 = 20, 𝑠 = 12, 𝑥! = 63.7, 𝜇 = 68.7

● 𝑇"# =
&!$'
(/ !

∼ 𝑡%*

-1.86 1.86



• Now assume that I have the grades for the midterm 𝑋 and the
• final 𝑌 for applied statistics.

• I want to see if students did better or worse at the finals.
My samples are "paired": The same student 𝑖 has both a 𝑋!
and a 𝑌!

• I create the variable 𝑋 − 𝑌 and test if the mean is 0.

• This is called paired t-test.

Paired observations



Parameter and point estimate

● Parameter of interest: Average difference between the midterm 
and final scores of all students

● Point estimate: Average difference between the midterm and 
final scores of sampled students

H0 : Midterm and final scores for each student are on average the 
same: 𝜇"+## = 0

HA :  Midterm and final scores for each student are on average the 
same: 𝜇"+## ≠ 0



Nothing new here

● The analysis is no different than what we have done 
before

● We have data from one sample: differences.
● We are testing to see if the average difference is 

different than 0.



Two sample t-test

• Now assume that I want to compare the midterm grades of 
male and female students.

• I have graded 30 midterms from female students and 23 
midterms from male students.

• Let 𝑋 denote the grades of female students, 𝑌 denote the
grades of male students.

• We assume 𝑋 and 𝑌 have the same unknown variance.



Two sample t-test

• Now assume that I want to compare the midterm grades of 
male and female students.

• I have graded 30 midterms from female students and 20 
midterms from male students.

• Parameters of interest: Average score of all female 
students minus average score of all male students.

• Point estimates: Average score of sampled female 
students minus average score of sampled male students

• 𝐻@: 𝜇A − 𝜇B = 0 vs 𝐻1: 𝜇/ − 𝜇2 ≠ 0



Two sample t-test

• Now assume that I want to compare the midterm grades of 
male and female students.

• I have graded 30 midterms from female students and 20 
midterms from male students.

• Parameters of interest: Average score of all female 
students minus average score of all male students.

• Point estimates: Average score of sampled female 
students minus average score of sampled male students

• 𝐻@: 𝜇A − 𝜇B = 0 vs 𝐻1: 𝜇/ − 𝜇2 ≠ 0



Test statistics
Test statistic for inference on the difference of two small 
sample means 

The test statistic for inference on the difference of two means 
where 𝜎" = 𝜎# = 𝜎 is unknown is the T statistic. 

where

𝑠$ =
∑%&"
'! 𝑥% − ‾𝑥" $ + ∑(&"

'" 𝑥( − ‾𝑥$
$

𝑛" + 𝑛$ − 2
,𝑆𝐸 = 𝑠$

1
𝑛"
+
1
𝑛$

, 𝑑𝑓 = 𝑛" + 𝑛$ − 2



Test statistics (cont.)

In context...

M F

𝑠$ =
∑%&"
'! 𝑥% − ‾𝑥" $ + ∑(&"

'" 𝑥( − ‾𝑥$
$

𝑛" + 𝑛$ − 2
,𝑆𝐸 = 𝑠$

1
𝑛"
+
1
𝑛$

, 𝑑𝑓 = 𝑛" + 𝑛$ − 2

𝑆𝐸 =  18.46, 𝑇 = 0.49 , 𝑑𝑓 = 51

Find the p-value. What is the conclusion?



Meaning of significance

Suppose :
● "𝑋' = 50, 𝑠 = 2
● 𝐻( ∶ 𝜇 ≤ 49.5, 𝐻) ∶ 𝜇 > 49.5.
● Compute the p-value for 𝑛 = 100 and 𝑛
= 10000?



Meaning of significance

Suppose :
● "𝑋' = 50, 𝑠 = 2
● 𝐻( ∶ 𝜇 ≤ 49.9, 𝐻) ∶ 𝜇 > 49.9.
● Compute the p-value for 𝑛 = 100 and for 
𝑛 = 10000?



Practical vs statistical significance
• Real differences between the point estimate and null value are
easier to detect with larger samples.

• However, very large samples will result in statistical
significance even for tiny differences between the sample mean
and the null value (effect size), even when the difference is not
practically significant.

• This is especially important to research: if we conduct a study,
we want to focus on finding meaningful results (we want
observed differences to be real but also large enough to
matter)



Review of Hypothesis testing

• Hypothesis tests allow us to answer simple “yes-or-no” 
questions,  such as:

• Is smoking independent from cardiovascular disease?

• Does the average blood pressure among mice in the 
treatment  group equal the average blood pressure among 
mice in the control group?



Review of Hypothesis testing

• Hypothesis tests allow us to answer simple “yes-or-no” 
questions, such as:

1. Define the null and alternative hypotheses.  
2. Construct the test statistic.
3. Compute the p-value.
4. Decide whether to reject the null hypothesis.

• Is smoking independent from cardiovascular disease?
• Does the average blood pressure among mice in the 

treatment  group equal the average blood pressure among 
mice in the control group?



1. Define the null and alternative hypotheses

We divide the world into null and alternative hypotheses.
The null hypothesis, 𝐻,, is the default state of belief about the world. 

For instance:

1. Smoking is independent of cardiovascular disease.

2. There is no difference in the average blood pressures.

The alternative hypothesis, 𝐻%, represents the complement of the null. For 
instance:

1. Smoking and cardiovascular disease are not independent.

2. There is a difference in the average blood pressures.



2. Construct the test statistic

The test statistic summarizes the extent to which our data are  (in) 
consistent with 𝐻,.

Let 𝜇-/𝜇.. respectively denote the average blood pressure for  the 
nt/nc mice in the treatment and control groups.

To test 𝐻, : 𝜇- = 𝜇.,  we use a two-sample statistic:

𝑠! =
∑"#$
%! 𝑥" − ‾𝑥& ! + ∑'#$

%" 𝑥' − ‾𝑥(
!

𝑛$ + 𝑛! − 2

𝑇)* =
E𝑥+ − 𝑥,

𝑠$ 1
𝑛"
+ 1
𝑛$

𝑑𝑓 = 𝑛$ + 𝑛! − 2



3. Compute the p-value

The test statistic summarizes the extent to which our data are  (in) 
consistent with 𝐻,.

Let 𝜇-/𝜇.. respectively denote the average blood pressure for  the 𝑛-
/𝑛. mice in the treatment and control groups.

To test 𝐻, : 𝜇- = 𝜇.,  we use a two-sample statistic



3. Compute the p-value

• The p-value is the probability of observing a test statistic at  least 
as extreme as the observed statistic, under the  assumption that 
𝐻, is true.

• A small p-value provides evidence against 𝐻,.

• Suppose we compute 𝑇 = 2.55 for our test of 𝐻,: 𝜇/ = 𝜇0 with 10 
mice in the control group and 10 mice in the treatment group.

• Under 𝐻,, 𝑇 ∼ 𝑡12!$3 for a two-sample t-statistic.

• The p-value is 0.02 because, if 𝐻, is true, we would only see
|𝑇| this large 2% of the time.



4. Decide whether to reject the null 
hypothesis

• A small p-value indicates that such a large value of the test  
statistic is unlikely to occur under 𝐻,.

• So, a small p-value provides evidence against 𝐻,.
• If the p-value is sufficiently small, then we will want to reject

𝐻, (and, therefore, make a potential “discovery”).
• How small is small enough?





● Type 1 error is rejecting H0 when you shouldn’t have, and the 
probability of doing so is α (significance level)
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the probability of doing so is β (a little more complicated to 
calculate) 
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● Type 1 error is rejecting H0 when you shouldn’t have, and the 
probability of doing so is α (significance level)

● Type 2 error is failing to reject H0 when you should have, and 
the probability of doing so is β (a little more complicated to 
calculate) 

● Power of a test is the probability of correctly rejecting H0, and 
the probability of doing so is 1 − β

● In hypothesis testing, we want to keep α and β low, but there 
are inherent trade-offs



Type I error

• As a general rule we reject H0 when the p-value is less than  
0.05, i.e. we use a significance level of 0.05, α = 0.05.

• Type I error rate:

• P (Type I error) = P (Reject H0|H0 is true) ≤ α

• Increasing α increases the Type I error rate.
• When we select α we control for the tolerance we have for  

type I errors.



Type II error

• If the alternative hypothesis is actually true, what is the  chance that 
we make a Type II Error, i.e. we fail to reject the  null hypothesis even 
when we should reject it?

• The answer is not obvious, but
• If the true population average is very close to the null  

hypothesis value, it will be difficult to detect a difference (and  
rejectH0).

• If the true population average is very different from the null  
hypothesis value, it will be easier to detect a difference.

• The probability of correctly rejecting the null is the power of  the
test.



Multiple testing

• Now assume we want to test multiple hypotheses
𝐻F1, … ,𝐻F2

• If we reject all null hypotheses for which the p-
value falls  below 0.05, then how many Type I 
errors will we make?



A thought experiment

• Suppose that we flip a fair coin ten times, and we 
wish to test 𝐻F: the coin is fair.

• We’ll probably get approximately the same number of 
heads  and tails.

• The p-value probably won’t be small. We do not 
reject 𝐻F.

• But what if we flip 1,024 fair coins ten times each?



Multiple hypotheses testing

• Suppose we test 𝐻F1, . . . , 𝐻F2, all of which are true, 
and  reject any null hypothesis with a p-value below 
0.05.

• Then we expect to falsely reject approximately 0.05 × 𝑚
null  hypotheses.

• If 𝑚 = 10,000, then we expect to falsely reject 500
null  hypotheses by chance!

• That’s a lot of Type I errors, i.e. false 
discoveries/false  positives!

• Example: Genome-wide association studies.



Family-wise error rate

Fail to reject 𝐻$ Reject 𝐻$
H0 true
H1 true

U
W

V
S

m0

m − m0

m − R R m

FWER =1 − P (do not falsely reject any null hypothesis)=

= 1 − 𝑃(⋂GH12 do not falsely rejectH0j)

The probability of making at least one type 1 error



Family-wise error rate

FWER =1 − P (do not falsely reject any null hypothesis)=
= 1 − 𝑃(⋂45%1 do not falsely rejectH0j)

If the tests are independent and all H0j are true then

FWER = 1 - ∑45%1 P(𝑑𝑜 𝑛𝑜𝑡 𝑓𝑎𝑙𝑠𝑒𝑙𝑦 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻,4) = 1 − 1 − 𝑎 1

Fail to reject 𝐻$ Reject 𝐻$
H0 true
H1 true

U
W

V
S

m0

m − m0

m − R R m



Multiple hypotheses testing

FWER =P (falsely reject at least one null hypothesis) =

where 𝐴G is the event that we falsely reject the 𝑗 − 𝑡ℎ null 
hypothesis.  If we only reject hypotheses when the p-
value is less than α/m,  then

because P (Aj )≤ α/m

This is the Bonferroni Correction: to control FWER at level 
𝛼, reject  any null hypothesis with p-value below 𝛼/𝑚

𝑃 ∪GH12 𝐴G ≤>
GH1

2

𝑃 𝐴G



Example: Video Games and ADHD

• If we reject 𝐻!( if the p-value is less than 𝛼 = 0.05, we will conclude that 
TV, VG-C, VG-I significantly affect YAS, VG-C and VG-I significantly 
affect Inattention and ADHD.

• However, we have tested multiple hypotheses, so the FWER is greater 
than 0.05 .



Example: Video Games and ADHD

vs Internet TV VG-C VG-I
Young’s Addiction Scale 0.804 0.040 < 0.001 <0.001

Conner’s Scale: Oppositional 0.096 0.397 0.917 0.826
Conner’s Scale: Inattention 0.289 0.311 0.001 <0.001

Conner’s Scale: Hyperactivity 0.901 0.397 0.800 0.142
Conner’s Scale: ADHD 0.115 0.343 0.018 0.020

• If we reject 𝐻!( if the p-value is less than 𝛼 = 0.05, we will conclude that 
TV, VG-C, VG-I significantly affect YAS, VG-C and VG-I significantly 
affect Inattention and ADHD.

• However, we have tested multiple hypotheses, so the FWER is greater 
than 0.05 .



Example: Video Games and ADHD

vs Internet TV VG-C VG-I
Young’s Addiction Scale 0.804 0.040 < 0.001 <0.001

Conner’s Scale: Oppositional 0.096 0.397 0.917 0.826
Conner’s Scale: Inattention 0.289 0.311 0.001 <0.001

Conner’s Scale: Hyperactivity 0.901 0.397 0.800 0.142
Conner’s Scale: ADHD 0.115 0.343 0.018 0.020
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Holm’s method for controling 
FWER

• Compute p-values, p1, . . . , pm for the m null hypotheses
H01, . . . , H0m.

• Order the m p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m).
• Define

𝑃) = 𝑚𝑖𝑛' 𝑃(') <
𝛼

𝑚 + 1 − 𝑗

• Reject all null hypotheses H0j for which 𝑝𝑗 < 𝑝(𝐿)
• Holm’s method controls the FWER at level α.



Bonferroni vs Holm

Consider m = 5 
p-values 
p1 = 0.006, p2 = 0.918, p3 = 0.012, p4 = 0.601, p5 = 0.756.

Then
p(1) = 0.006, p(2) = 0.012, p(3) = 0.601, p(4) = 0.756, p(5) =0.918.

• Bonferroni?
• Bonferroni - Holm?



Bonferroni vs Holm

• Bonferroni is simple ... reject any null hypothesis 
with a  p-value below α/m.

• Holm is slightly more complicated, but it will lead 
to more  rejections while controlling FWER!!

• Holm is a better choice



The False Discovery Rate

• The FWER rate focuses on controlling 𝑃 (𝑉 > 1), i.e., the  
probability of falsely rejecting any null hypothesis.

• This is a tough ask when m is large! It will cause us to be  
super conservative (i.e. to very rarely reject).

• Instead, we can control the false discovery rate:

• FDR =E(V/R)

Fail to reject 𝐻$ Reject 𝐻$
H0 true
H1 true

U
W

V
S

m0

m − m0

m − R R m



The False Discovery Rate

• A scientist conducts a hypothesis test on each of m = 20, 000
• drug candidates.

• She wants to identify a smaller set of promising candidates to  
investigate further.

• She wants reassurance that this smaller set is really  
“promising”, i.e. not too many falsely rejected H0’s.

• FWER controls P(at least one false rejection).
• FDR controls the fraction of candidates in the smaller set that  

are really false rejections. This is what she needs!

FDR = 𝐸
𝑉
𝑅

= 𝐸
number of false rejections
total number of rejections



Benjamini-Hochberg procedure for 
controlling FDR

1.Specify q, the level at which to control the FDR. 
2.Compute p-values p1, . . . , pm for the null hypotheses

H01, . . . , H0m.
3.Order the p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m). 
4.Define L = maxj : p(j) < qj/m.
5.Reject all null hypotheses H0j for which p(j) ≤ p(L).

Then, FDR ≤ q.



FWER vs FDR

Consider m =  5 
p-values 
p1 = 0.006, p2 = 0.918, p3 = 0.012, p4 = 0.601, p5 = 0.756.

Then
p(1) = 0.006, p(2) = 0.012, p(3) = 0.601, p(4) = 0.756, p(5) =0.918.

• Bonferroni?
• Bonferroni-Holm?
• Benjamini-Hochberg?


