
Probabilistic Graphical Models

Structure Learning – Pt2

Causality



Reminder:What if you do not know the graph

2

Smoking

Yellow Teeth CVD

Graph 𝐺 captures the qualitative relations JPD 𝐽 encodes the quantitative probabilistic properties

Markov Condition (MC):
Every variable is independent of its non-descendants in the graph given its parents.

CVD

Yellow Teeth Smoking Y N

Y Y 0.17 0.06 0.13

N Y 0.06 0.02 0.08

Y N 0.02 0.06 0.08

N N 0.15 0.46 0.61

0.4 0.6 1



Faithfulness
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MC

MC+FAITHFULNESS 𝐷𝑆𝑒𝑝 𝐴, 𝐵 𝒁 in 𝐺ÛA ∥ B|𝐙 in 𝐽
𝐷𝑆𝑒𝑝 𝐴, 𝐵 𝒁 in 𝐺ÞA ∥ B|𝐙 in 𝐽

Faithfulness Condition:
Independences stem only from the structure, not the parameterization of 
the distribution.
We say that the graph and the distribution are faithful to each other.



Faithfulness 
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Sun

Sunscreen

Melanoma

The parameters do not cancel each other out!



Testing (In)Dependencies

Hypothesis Testing
● Identify the research question (C2 blades are better than C1 

blades)
● Writing the statistical hypotheses in terms of parameters of interest.     H0: 

𝑝! − 𝑝"=0.03 and   Ha: 𝑝! − 𝑝" > 0.03 .

● Collect data and calculate a statistic (Z-score:!#!$%#"$('!$'")
)*#!$#"

)

● Find the distribution of the statistic under the null hypothesis 
𝑁(0.03, 𝑆𝐸#!$#")

● Find the p-value (probability that the result we got or a more extreme one 
happens just by chance given that the null hypothesis is true).

● Decide if the p-value is small or large 

● Reject if p-value is lower than the significance threshold 𝑎.



Testing (In)Dependencies

Hypothesis Testing
● Identify the research question (Is smoking independent from CVD?

blades are better than C1 blades)
● Writing the statistical hypotheses in terms of parameters of interest.  

P(smoking, CVD) = P(smoking)P(CVD)

● Collect data and calculate a statistic (Z-score:!!!"#!""(%!"%")
'(#!$#"

)

● Find the distribution of the statistic under the null hypothesis 
𝑁(0.03, 𝑆𝐸!!"!")

● Find the p-value (probability that the result we got or a more extreme one 
happens just by chance given that the null hypothesis is true).

● Decide if the p-value is small or large 

● Reject if p-value is lower than the significance threshold 𝑎.



Example: Independence

• You have a population of 520 
people
• 160/520 smoke.
• 210/520 have CVD.

Contingency table

CVD

Y N Total

Smoking
Y 120 40 160

N 90 270 360

Total 210 310 520



Reverse-engineering the graph

What you want

8

What you have 

Smoking

Yellow Teeth CVD

Smoking P(CVD)

Y 0.75

N 0.15

P(Smoking)

0.3

Smoking P(YT)

Y 0.85

N 0.10

You can use tests of conditional 
independence to identify the set of 
conditional independencies:

Here you only have one independence:

CVD ∥ Yellow Teeth|Smoking 

And the rest are dependencies: 

Smoking ∦ Yellow Teeth|∅
Smoking ∦ Yellow Teeth|CVD

Smoking ∦ CVD|∅
Smoking ∦ CVD|Yellow TeethCan we find the graph where the only d-separation 

is CVD and Yellow teeth given smoking?



Pattern DAGs
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• You can still “read” all conditional independencies entailed by the Markov Condition 
in the graph using d-separation.

PDAGDAG



The PC algorithm

Search strategy: 
Identify the skeleton of your PDAG:

Begin with the full graph.
For k=0:number of variables -2
Using heuristic 3

For each pair of adjacent variables X, Y, 
look within Adjacencies(X)\Y or Adjacencies(Y)\X for a set of k observed variables Z such that X ∥ Y|Z.
If you succeed, remove X-Y.

Orient all invariant edges of the Markov Equivalence class
Apply R0
While no more rules are applicable, apply R1-R3

10

Rules R0-R3 are complete (Meek, 1995)



PC algorithm

Introduced by Peter Spirtes and Clark Glymour in 1993.
One of the first algorithms to perform causal discovery 
from cross-sectional data.
Uses a complete set of orientation rules and therefore 
identifies the PDAG that faithfully represents the 
conditional independencies it identifies.

The PDAG is maximally informative, in the sense that every un-oriented edge has different orientations in 
different DAGs in the Markov Equivalence class.

Most current constraint-based algorithms are 
extensions/improvements of the PC algorithm.

11



PC Algorithm - Complexity

Suppose that the maximum number of parents for any variable in the 
graph is 𝑘.
Then the worst-case number of tests of conditional independence 
performed by PC is:

2 !
"
∑#$%& !'(

#

which is bounded by 
𝑛" 𝑛 − 1 &'(

(𝑘 − 1)!

i.e., polynomial to the number of variables, exponential to the maximum 
number of parents.

12



Learning causal networks as a model selection problem

Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Identify all DAGs that maximize the posterior 
probability of the graph given the data: P(G|D)
(or some other data-fitting criterion in general)



Posterior probability of the graph

𝑃 𝐺 𝐷 =
𝑃(𝐷|𝐺)×𝑃(𝐺)

𝑃(𝐷)
=
𝑃(𝐷|𝐺)×𝑃(𝐺)

𝑃(𝐷)

14

Normalization constant

Probability  of the data 
given the graph Prior probability 

of the graph



Posterior probability of the graph

𝑃 𝐺 𝐷 =
𝑃(𝐷|𝐺)×𝑃(𝐺)

𝑃(𝐷)
=
𝑃(𝐷|𝐺)×𝑃(𝐺)

𝑃(𝐷)

15

You can ignore it since it 
does not depend on the 
graph structure.

Probability  of the data 
given the graph Prior probability 

of the graph



Scoring function
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𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃(𝐷|𝐺)×𝑃(𝐺)Find G: 



Scoring function
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𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃(𝐷|𝐺)×𝑃(𝐺)Find G: 

Uniform/based on prior 
knowledge/favoring sparsity



Scoring function
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𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃(𝐷|𝐺)×𝑃(𝐺)Find G: 

Uniform/based on prior 
knowledge/favoring sparsity

0
𝜽

𝑃 𝐷 𝐺, 𝜃 𝑃 𝜃 𝑑𝜽

Average over all possible 
parameters (of the joint 
probability distribution).



Scoring function
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𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃(𝐷|𝐺)×𝑃(𝐺)Find G: 

Uniform/based on prior 
knowledge/favoring sparsity

0
𝜽

𝑃 𝐷 𝐺, 𝜃 𝑃 𝜃 𝑑𝜽

Average over all possible 
parameters (of the joint 
probability distribution).

=!
𝜽

𝑃 𝐷 𝜽𝒙|𝒑𝒂(𝒙) 𝑓 𝜽 𝑑𝜽

The parameterization 
depends on the graphical 
structure.



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

𝑃 𝐷 𝐺 = ∫𝜽 𝑃 𝐷 𝜽𝒙|𝒑𝒂(𝒙) 𝑓 𝜽 𝑑𝜽 =



• Score is decomposable:
• It is a product of terms involving only a variable and its parents.

Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

𝑃 𝐷 𝐺 = ∫𝜽 𝑃 𝐷 𝜽𝒙|𝒑𝒂(𝒙) 𝑓 𝜽 𝑑𝜽 =

;
.

<
/(|#*(()

𝑃 𝐷 𝜃.|!0(.) 𝑓 𝜃.|!0(.) 𝑑𝜃.|!0(.)



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

𝑃 𝐷 𝐺 = ∫𝜽 𝑃 𝐷 𝐺, 𝜽𝒙|𝒑𝒂(𝒙) 𝑓 𝜽 𝑑𝜽 =

;
.

<
/(|#*(()

𝑃 𝐷 𝐺, 𝜃.|!0(.) 𝑓 𝜃.|!0(.) 𝑑𝜃.|!0(.)

<
/-

𝑃 𝐷 𝜃1 𝑓 𝜃1 𝑑𝜃1 <
/.|/-

𝑃 𝐷 𝜃2|1 𝑓 𝜃2|1 𝑑𝜃2|1 <
/.|/-

𝑃 𝐷 𝜃2|31 𝑓 𝜃2|31 𝑑𝜃2|31



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

𝑃 𝐷 𝐺 = ∫𝜽 𝑃 𝐷 𝐺, 𝜽𝒙|𝒑𝒂(𝒙) 𝑓 𝜽 𝑑𝜽 =

;
.

<
/(|#*(()

𝑃 𝐷 𝐺, 𝜃.|!0(.) 𝑓 𝜃.|!0(.) 𝑑𝜃.|!0(.)

<
/-

𝑃 𝐷 𝜃1 𝑓 𝜃1 𝑑𝜃1 <
/.|/-

𝑃 𝐷 𝜃2|1 𝑓 𝜃2|1 𝑑𝜃2|1 <
/.|/-

𝑃 𝐷 𝜃2|31 𝑓 𝜃2|31 𝑑𝜃2|31

This score is a marginal likelihood, and 
can be computed in closed form for 
some families of distributions that 

have conjugate priors 



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

Reminder: Bayesian Statistics.

1

2

3

10 0.2 0.4 0.6 0.8

𝜃'~𝐵𝑒𝑡𝑎 0 + 1, 0 + 1 = 𝐵𝑒𝑡𝑎(1, 1) (the 
uniform distribution)

You have observed 0 smokers and 0 non smokers. (Prior)



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$1

2

3

10 0.2 0.4 0.6 0.8

𝜃'~𝐵𝑒𝑡𝑎 2 + 1, 6 + 1 = 𝐵𝑒𝑡𝑎(3, 7)

Reminder: Bayesian Statistics.

You then observe 2 smokers and 6 non-smokers. Bayesian Update :



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

Bayesian Statistics.

You then observe 2 smokers and 6 non-smokers. Bayesian Update:

You now believe that the proportion of 
smokers to non smokers is close to 3:7

1

2

3

10 0.2 0.4 0.6 0.8

𝜃'~𝐵𝑒𝑡𝑎 2 + 1, 6 + 1 = 𝐵𝑒𝑡𝑎(3, 7)



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

Bayesian Statistics.

You then observe 2 smokers and 6 non-smokers. Posterior:

You now believe that the proportion of 
smokers to non smokers is close to 3:7

1

2

3

10 0.2 0.4 0.6 0.8



Scoring function
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Smoking

CVD

P(Smoking)

Yes 𝜃!
No 1−𝜃!

P(CVD)

Smoking Yes No

Yes 𝜃"|$ 1− 𝜃"|$

No 𝜃"|%$ 1−𝜃"|%$

Computed in closed form!

<
/0

𝑃 𝐷 𝜃1 𝑓 𝜃1 𝑑𝜃1 =

Γ 2 Γ(6)
Γ 8

= 0.0238

<
/0

;
4

𝑋4 𝜃1 𝑓 𝜃1 𝑑𝜃1 =



Example Search Strategy (Greedy Search)

Initialize G as the empty/full/random graph and score.

Score all networks that can be produced by G with a single 
change: adding/removing/reversing an edge, ensuring G 
remains a DAG (no cycles). 

Keep the change that resulted in the highest-scoring 
network.

Until no single action improves the score.

29



Example Search Strategy (Greedy Search)

30

Score=-100



Example Search Strategy (Greedy Search)

31

Remove Smoking → Protein X Add Yellow Teeth→ Smoking Reverse CVD → Protein X

……

Score=-100

Score=-104 Score=-90 Score=-110



Example Search Strategy (Greedy Search)
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Remove Smoking → Protein X Add Yellow Teeth→ Smoking Reverse CVD → Protein X

……

Score=-100

Score=-104 Score=-90 Score=-110



Example Search Strategy (Greedy Search)

33

Remove Smoking → Protein X Add Yellow Teeth→ Smoking Reverse CVD → Protein X

……

Score=-100

Score=-104 Score=-90 Score=-110



Search-and-Score CBN learning 

Other search strategies are possible.
e.g. BFS, DFS, Genetic algorithms, TABU search.

You can search in the space of PDAGs.
e.g. GES algorithm, (Chickering, 1996)

You may get stuck in local minima.
Avoid by random restarts, simulated annealing, stochastic greedy search.

Exact methods exist for actually scoring all possible 
networks (e.g. Koivisto and Sood, 2004)

Using dynamic programming & bounded number of parents per variable.
𝑂 𝑛23 space + time complexity, not possible for more than ~20-40 variables.

34



Comparison

Constraint-Based
Easier to extend to different 
types of data (e.g., censored).
Easier to extend to networks 
with latent variables (next 
time).
More efficient in learning the 
skeleton of the network.

Search-and-score
Robust to small samples.
Easier to incorporate priors 
on the networks.
Better in identifying the edge 
orientations.
Exact methods also exist, 
limited to ~20-40 variables.



Modelling causality

36



Association is not Causality
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Smoking COPDSmoking COPD

Gene X

Smoking COPD

Gene X

Three models, all imply Smoking and COPD are dependent 
P(COPD|Smoking)≠ P(COPD)

In model 1, changing smoking habits does not affect the probability of getting COPD
P(COPD|do(Smoking))= P(COPD)



Modeling causality
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Recipe for creating a causal graph: 
• Model variables as graph nodes.
• Add directed edges 

corresponding to direct 
causation.

Smoking

Yellow Teeth CVD

Smoking causes CVD 
directly (in the 

context of measured 
variables)



Modeling Causality
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Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Gene X (not in 
you model)

Not allowed (yet)

For this lecture:
• No hidden common causes (causal sufficiency).
• No causal feedback.
• Causal structure is described by a Directed Acyclic 

Graph (DAG). 



Modeling Interventions
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Smoking

Yellow Teeth CVD

• Ideal Interventions: You completely set the 
value/distribution of a variable.

• e.g. assign to treatment/placebo group
• The type of intervention you would typically 

like to do, not always possible.
• fat-hand interventions affect more than one 

variable at a time.
• sometimes a result of bad experimental 

design.



Modeling Interventions
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Smoking

Yellow Teeth CVD

• Intervening on the cause: 
• You force half your sample to 

smoke, ban the rest from smoking.
• More smokers than non-smokers 

have yellow teeth.



Modeling Interventions
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Smoking

Yellow Teeth CVD

• Intervening on the effect: 
• You stain half your sample’s teeth 

yellow, you whiten the teeth of the 
rest.

• Smokers do not have yellow teeth 
more than non-smokers.



Modeling Interventions
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Smoking

Yellow Teeth CVD

• Graph Surgery/do operator removes all 
edges that are incoming to the 
manipulated variable.

• Causal relationships are now described 
by the manipulated graph.



Modeling probabilistic causality
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Smoking

Yellow Teeth CVD

Graph 𝐺 captures the qualitative causal relations JPD 𝐽 encodes the quantitative probabilistic properties

What 
connects 
the two?

Smoking 
causes CVD 
directly (in 
the context 
of measured 

variables)

CVD

Yellow Teeth Smoking Y N

Y Y 0.17 0.06 0.13

N Y 0.06 0.02 0.08

Y N 0.02 0.06 0.08

N N 0.15 0.46 0.61

0.4 0.6 1



Causal Markov Condition
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Smoking

Yellow Teeth CVD

Graph 𝐺 captures the qualitative causal relations JPD 𝐽 encodes the quantitative probabilistic properties

Causal Markov Condition (CMC):
Every variable is independent of its non-effects (non-descendants in the graph) 
given its direct causes (parents).

CVD

Yellow Teeth Smoking Y N

Y Y 0.17 0.06 0.13

N Y 0.06 0.02 0.08

Y N 0.02 0.06 0.08

N N 0.15 0.46 0.61

0.4 0.6 1



Causal Markov Condition
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Smoking

Yellow Teeth CVD

Graph 𝐺 captures the qualitative causal relations JPD 𝐽 encodes the quantitative probabilistic properties

Causal Markov Condition (CMC):
Every variable is independent of its non-effects (non-descendants in the graph) 
given its direct causes (parents).

CVD

Yellow Teeth Smoking Y N

Y Y 0.17 0.06 0.13

N Y 0.06 0.02 0.08

Y N 0.02 0.06 0.08

N N 0.15 0.46 0.61

0.4 0.6 1

Learning the value of intermediate and common causes renders variables independent.



Factorization with the CMC
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P(Smoking, Yellow Teeth, CVD) =
P(Smoking) ´
P(Yellow Teeth | Smoking ) ´
P(CVD | Smoking)  

𝑃 V =.
"

𝑃 |𝑉" Parents of 𝑉" in the graphIn general:

Smoking

Yellow Teeth CVD



Causal Bayesian Network

48

𝑃 |Yellow Teeth Smoking = 0.85

𝑃 |Yellow Teeth ¬Smoking = 0.1 𝑃 |CVD ¬Smoking = 0.15

𝑃 |CVD Smoking = 0.75

𝑃 Smoking = 0.3

Causal DAG and conditional probability tables define a Causal Bayesian Network

Smoking

Yellow Teeth CVD



Things you can do with a Causal Bayesian Network
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1. Factorize the joint probability distribution.

2. Answer questions like:
1. Is Smoking independent from  Fatigue given  

Levels of Protein X?
• Smoking ∥ FaKgue|Levels of Protein X?

2. What is the probability of getting CVD if I have 
high levels of Protein X?
• P(CVD| Levels of Protein X=high ) = ?

3. Will I reduce the probability of getting CVD if I 
design a drug that lowers the levels of protein X?

• P(CVD|do(Levels of Protein X=low))?

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



CMC and conditional independencies

50

Every variable is 
independent of its 
non-effects given 
its direct causes.

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



The d-separation criterion

Algorithm to determine all independencies 
entailed by the Causal Markov Condition.

51
Paths in the graph represent information flow (or lack thereof)



The d-separation criterion

Open (d-connecting) paths :
A path is d-connecting given Z iff 
every collider on the path is in Z or has a 
descendant in Z 
AND
every non-collider on the path is not in Z.

Otherwise, the path is blocked (d-separating).

52

The same path can be 
d-connecting given 𝒁𝟏, 
d-separating given 𝒁𝟐



The d-separation criterion

Algorithm to determine all independencies that are entailed by 
the CMC.

Conditional independencies in the joint distribution can be 
decided based on the absence of open paths in the graph:

Open paths are called d-connecting paths (given a set of variables).
If no open path exists, the endpoints are d-separated (given the set of 
variables).
Otherwise, the endpoints are d-connected (given the set of variables)

Notation: 𝑑𝑠𝑒𝑝 A, B 𝒁 : 𝐴 and 𝐵 are d-separated given 𝒁.
𝑑𝑐𝑜𝑛 A, B 𝒁 : 𝐴 and 𝐵 are d-connected given 𝒁.

53



The d-separation criterion

To find if 𝑑𝑠𝑒𝑝 X, Y 𝒁 in the graph: 
1. Find the paths from X to Y (ignoring 

orientations).
2. If there exists no open path  given Z, 

then 𝑑𝑠𝑒𝑝(X, Y |𝒁).

54

In CBNs:
𝑑𝑠𝑒𝑝 X, Y 𝒁 in 𝐺 ⇒ X ∥ Y|𝐙 in 𝑃

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



Things you can do with a Causal Bayesian Network
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1. Factorize the joint probability distribution.

2. Answer questions like:
1. Is Smoking independent from  Fatigue given  

Levels of Protein X?
• Smoking ∥ FaKgue|Levels of Protein X?

2. What is the probability of getting CVD if I have 
high levels of Protein X?
• P(CVD| Levels of Protein X=high ) = ?

3. Will I reduce the probability of getting CVD if I 
design a drug that lowers the levels of protein X?

• P(CVD|do(Levels of Protein X=low))?

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



Probabilistic Inference: Easy

56

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou measure all covariates for a patient. 
(smoking, medicine y, yellow teeth, protein x)
What is the probability they have CVD?

P(CVD| Levels of Protein X=high, Smoking=yes, 
Medicine Y = no, Yellow Teeth = yes ) = ?



Probabilistic Inference: Easy
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou measure all covariates for a patient. 
(smoking, medicine y, yellow teeth, protein x)
What is the probability they have CVD?

P(CVD| Levels of Protein X=high, Smoking=yes, 
Medicine Y = no, Yellow Teeth = yes ) = 

P(CVD|Levels of Protein X)



Probabilistic Inference: Easy
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou measure all covariates for a patient. 
(smoking, medicine y, yellow teeth, protein x)
What is the probability they have CVD?

P(CVD| Levels of Protein X=high, Smoking=yes, 
Medicine Y = no, Yellow Teeth = yes ) = 

P(CVD|Levels of Protein X)



Probabilistic Inference: hard

In general, probabilistic inference is NP-hard.

Exact algorithms can have better average-case 
performance, particularly for distributions where the 
integrals can be computed in closed form.

E.g., junction tree, belief propagation

Otherwise, approximate inference using Sampling/MCMC

59



Probabilistic Inference: Hard

60

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou do not have measurements for  protein X, 
you only know that a patient smokes and does 
not take medicine Y.

What is the probability they have CVD?

P(CVD| Smoking=yes, Medicine Y = no) = 



Probabilistic Inference: Hard
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y

You do not have measurements for  protein X, 
you only know that a patient smokes and does 
not take medicine Y.

What is the probability they have CVD?

P(CVD| Smoking=yes, Medicine Y = no) =

∑!567843 9 P(CVD|Smoking=yes, Medicine Y=no, Protein X)P(ProteinX|Smoking= Yes, Medicine Y=no) =
∑!567843 9 P(CVD|Protein X)P(ProteinX|Smoking= Yes, Medicine Y=no) =  



Things you can do with a Causal Bayesian Network
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1. Factorize the joint probability distribution.

2. Answer questions like:
1. Is Smoking independent from  Fatigue given  

Levels of Protein X?
• Smoking ∥ FaKgue|Levels of Protein X?

2. What is the probability of getting CVD if I have 
high levels of Protein X?
• P(CVD| Levels of Protein X=high ) = ?

3. Will I reduce the probability of getting CVD if I 
design a drug that lowers the levels of protein X?

• P(CVD|do(Levels of Protein X=low))?

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



Causal Inference
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou measure some  covariates for a patient. 
(medicine y, yellow teeth)
What is the probability they will get CVD if you 
make them quit smoking??

P(CVD| do(Smoking=no), Medicine Y = no, Yellow Teeth = yes ) 
= ?



Causal Inference
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine YYou measure some  covariates for a patient. 
(medicine y, yellow teeth)
What is the probability they will get CVD if you 
make them quit smoking??

If  you measure all covariates, you can do 
inference on the manipulated graph

P(CVD| do(Smoking=no), Medicine Y = no, Yellow Teeth = yes ) 
= ?



The do-calculus

Rule 1: Insertion/deletion of observations
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑍,𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 ,𝑊 if  d𝑠𝑒𝑝(𝑌, 𝑍 𝑋,𝑊 in  𝐺5

Rule 2: Action/observation exchange
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 , 𝑍,𝑊 if  𝑑𝑠𝑒𝑝(𝑌, 𝑍 𝑋,𝑊 in  𝐺56

Rule 3: Insertion/deletion of actions
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 ,𝑊 if  dsep(𝑌, 𝑍 𝑋,𝑊 in  𝐺56(7)

where 𝑍 𝑊 is the set of Z-nodes that are not ancestors of any W-nodes in 𝐺!
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Notation used in the do-calculus
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𝐺 𝐺# 𝐺#

X Y

B

D
A

C

Remove all 
edges into X
(manipulated 
graph)

Remove all 
edges out of X

X Y

B

D
A

C

X Y

B

D
A

C



Rule 1: Insert/Delete Observation

Rule 1: Insertion/deletion of observations
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑍,𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 ,𝑊 if d𝑠𝑒𝑝(𝑌, 𝑍 𝑋,𝑊 in  

𝐺#

69

X Y

B

D
A

C Independence in 𝐺5:

If Z is independent of Y given W in 
𝐺5, you can remove Z from 
𝑃 𝑌 𝑑𝑜 𝑋 , 𝐴 = 𝑃(𝑌|𝑑𝑜 𝑋 )



Rule 2: Action/Observation exchange 

Rule 2: Action/observation exchange
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 , 𝑍,𝑊 if  𝑑𝑠𝑒𝑝(𝑌, 𝑍 𝑋,𝑊 in  𝐺56
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X Y

B

D
A

C
Blocking backdoor paths

If all non causal paths between  X and Y are 
blocked, observing is the same as acting

𝑃 𝑌 𝑑𝑜 𝑋 , 𝐵 = 𝑃(𝑌|𝑋, 𝐵)



Rule 3: Insert/Delete Action

Rule 3: Insertion/deletion of actions
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 ,𝑊 if  dsep(𝑌, 𝑍 𝑋,𝑊
in  𝐺#$(&) where 𝑍 𝑊 is the set of Z-nodes that are not ancestors of any 

W-nodes in 𝐺M
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X Y

B

D
A

C If there is not path from 𝑍 to 𝑌, 
you can remove 𝑑𝑜(𝑍)

𝑃(𝐷|𝑑𝑜(𝑋)) = 𝑃(𝐷)



Do-calculus

An algorithm for converting “do”-probabilities to “see”-
probabilities
You know the graph, and you have an estimate of the 
observational probability distribution, and you want to 
answer:  what is 𝑃 𝑌 𝑑𝑜 𝑋 ?

You can use the rules of do-calculus to get an answer.
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Do-calculus / Example 1

What is 𝑃 𝑌 𝑑𝑜 𝑋 ?

𝑃 𝑌 𝑑𝑜 𝑋 =?
(

𝑃 𝑌 𝑑𝑜 𝑋 , 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )
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X Y

B

D
A

C



Do-calculus / Example 1

What is 𝑃 𝑌 𝑑𝑜 𝑋 ?

𝑃 𝑌 𝑑𝑜 𝑋

=?
(

𝑃 𝑌 𝑑𝑜 𝑋 , 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )

𝑃 𝑌 𝑑𝑜 𝑋 =?
(

𝑃 𝑌 𝑋, 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )
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X Y

B

D
A

C

Rule 2:
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 , 𝑍,𝑊
if  (𝑌 ∥ 𝑍 𝑋,𝑊 in  𝐺9:

Rule 2 with 
𝑍 ← 𝑋
𝑋 ← ∅
W ← 𝐵



Do-calculus / Example 1

What is 𝑃 𝑌 𝑑𝑜 𝑋 ?

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑑𝑜 𝑋 , 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑋, 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑋, 𝐵 𝑃(𝐵)
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X Y

B

D
A

C

Rule 3:
𝑃 𝑌 𝑑𝑜 𝑋 , 𝑑𝑜(𝑍),𝑊 = 𝑃 𝑌 𝑑𝑜 𝑋 ,𝑊 if  

(𝑌 ∥ 𝑍 𝑋,𝑊 in  𝐺9:(;)

Rule 3 with 
𝑍 ← 𝑋
𝑋 ← ∅
W ← ∅
Y ← 𝐵



Backdoor criterion: estimate the average treatment effect 

What is 𝑃 𝑌 𝑑𝑜 𝑋 ?

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑑𝑜 𝑋 , 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑋, 𝐵 𝑃(𝐵|𝑑𝑜 𝑋 )

𝑃 𝑌 𝑑𝑜 𝑋 =<
;

𝑃 𝑌 𝑋, 𝐵 𝑃(𝐵)
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X Y

B

D
A

C

Find a set of pre-
treatment covariates that 
block all backdoor paths, 
and “adjust” for their 
influence



Do-calculus / Example 2

What is 𝑃 𝐶 𝑑𝑜 𝑆 ?

𝑃 𝐶 𝑑𝑜 𝑆 = ∑W𝑃 𝐶 𝑑𝑜 𝑆 , 𝑡 𝑃(𝑡|𝑑𝑜 𝑆 ) [Probability axioms]
= ∑W𝑃 𝐶 𝑑𝑜(𝑆), 𝑑𝑜(𝑡) 𝑃(𝑡|𝑑𝑜 𝑆 ) [Rule 2: exchange t/do(t)]
= ∑W𝑃 𝐶 𝑑𝑜 𝑆 , 𝑑𝑜(𝑡) 𝑃(𝑡|𝑆) [Rule 2: exchange 

do(S)/S]
= ∑W𝑃 𝐶 𝑑𝑜(𝑡) 𝑃(𝑡|𝑆) [Rule 3: Remove do(S)]
= ∑XY ∑W𝑃 𝐶 𝑑𝑜 𝑡 , 𝑠Y 𝑃(𝑠Y|𝑑𝑜 𝑡 )𝑃(𝑡|𝑆) [Probability axioms]
=∑XY ∑W𝑃 𝐶 𝑡, 𝑠Y 𝑃(𝑠Y|𝑑𝑜 𝑡 )𝑃(𝑡|𝑆) [Rule 2: Exchange t/do(t)]
=∑XY ∑W𝑃 𝐶 𝑡, 𝑠Y 𝑃(𝑠Y)𝑃(𝑡|𝑆) [Rule 3: Remove do(t)]
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Smoking Cancer

Gene

Tar



Do-calculus

Allows us to get post-intervention probabilities from pre-
intervention probabilities
Complete for identification of post-intervention 
probabilities:

If we can identify a post-intervention probability from the pre-intervention probability, we can do this using 
some combination of do-calculus rules+ the axioms of probability.
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Things you can do with a Causal Bayesian Network

79

1. Factorize the joint probability distribution.

2. Answer questions like:
1. What is the probability of getting CVD if I have 

high levels of Protein X?
• P(CVD| Levels of Protein X=high ) = ?

2. Is Smoking independent from  Fatigue given  
Levels of Protein X?
• Smoking ∥ FaKgue|Levels of Protein X?

3. Will I reduce the probability of getting CVD if I 
design a drug that lowers the levels of protein X?

• P(CVD|do(Levels of Protein X=low))?

Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y


