Probabilistic Graphical Models

Bayesian Learning of parameters

Structure Learning

MLE limitations

- Two teams play 10 times, and the first wins 7 of the 10 matches \Rightarrow Probability of first team winning $=0.7$
- A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses \Rightarrow Probability of heads $=0.7$
- A coin is tossed 10000 times, and comes out 'heads' 7000 of the 10000 tosses
\Rightarrow Probability of heads $=0.7$
- Before the first game, you cannot have an opinion on which team will win

Bayesian Inference

- Given a fixed θ, tosses are independent
- If θ is unknown, tosses are not marginally independent each toss tells us something about θ

Bayesian Inference

- Given a fixed θ, tosses are independent
- If θ is unknown, tosses are not marginally independent each toss tells us something about θ

Bayesian Inference for Multinomial

Dirichlet distribution

$f\left(\theta_{1}, \ldots, \theta_{k} \mid \alpha_{1}, \ldots, a_{k}\right)=\left\{\begin{array}{c}\frac{1}{B(\alpha)} \prod_{i=1}^{K} \theta_{i}^{a_{i}-1}, \theta_{i} \in[0,1] \\ 0, \quad \text { otherwise }\end{array}\right.$
where $B(\alpha)=\frac{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\alpha_{0}\right)}, \alpha_{0}=\sum_{i=1}^{K} \alpha_{i}$

Bayesian Inference for Multinomial

$$
\begin{aligned}
& P(D \mid \theta)=\prod_{i=1}^{k} \theta_{i}^{M_{i}} \\
& P(\theta) \propto \prod_{i=1}^{k} \theta_{i}^{a_{i}}
\end{aligned}
$$

Update only uses sufficient statistics
$P(D \mid \theta) P(\theta) \propto \prod_{i=1}^{k} \theta_{i}^{a_{i}+M_{i}}$

Bayesian Estimation for BNs

- Instances are independent given the parameters ($\mathrm{X}\left[\mathrm{m}^{\prime}\right], \mathrm{Y}[\mathrm{m} ']$) are d-separated from (X [m], $Y[\mathrm{~m}]$) given θ
- Parameters for individual variables are independent a priori $P(\theta)=\Pi P\left(\theta_{X_{i}} \mid P_{a}\left(X_{i}\right)\right)$
- Posteriors for θ are also independent given the data:
- $P\left(\theta_{x}, \theta_{y \mid x} \mid D\right)=P\left(\theta_{x} \mid D\right) P\left(\theta_{y \mid x} \mid D\right)$

As in MLE, we can solve each estimation problem separately

Bayesian Estimation for BNs

- Instances are independent given the parameters ($\mathrm{X}\left[\mathrm{m}^{\prime}\right], \mathrm{Y}[\mathrm{m} ']$) are d-separated from ($\mathrm{X}[\mathrm{m}], Y[\mathrm{~m}]$) given θ
- Instances are independent given the parameterg-

- Parameters for individual variables are independenta $\operatorname{prioiri} P(\theta)=\mathbb{P}\left(\theta_{X_{i}} \mid P_{a}\left(X_{i}\right)\right)$
- Posteriors for $X_{\text {are also independent giver } \because \text { ed edty }} \ddagger$
- $P\left(\theta_{x}, \theta_{y \mid X} \mid D\right)=P\left(\theta_{x} \mid D\right) P\left(\theta_{y \mid x} \mid D\right)$

As in MLE, we can solve each estimation problem separately

- Posteriors for θ are also independent given the data:
- $P\left(\theta_{x}, \theta_{Y \mid X} \mid D\right)=P\left(\theta_{x} \mid D\right) P\left(\theta_{Y \mid X} \mid D\right)$

As in MLE, we can solve each estimation problem separately

- Posteriors of θ can be computed independently
- For multinomial $\theta_{X \mid u}$ if prior is $\operatorname{Dirichlet}\left(a_{x^{1} \mid u}, \ldots, a_{x^{k} \mid u}\right)$
- posterior is $\operatorname{Dirichlet}\left(a_{x^{1} \mid \boldsymbol{u}}+M\left[x^{1}, \boldsymbol{u}\right], \ldots, a_{x^{k} \mid \boldsymbol{u}}+M\left[x^{k}, \boldsymbol{u}\right]\right)$

Equivalent Sample size

- We need hyperparameter $\alpha_{x \mid u}$ for each node X, value x, and parent assignment \boldsymbol{u}
- Prior network with parameters Θ_{o}
- Equivalent sample size parameter a
$-\alpha_{x \mid \boldsymbol{u}}=\alpha P\left(x, \boldsymbol{u} \mid \Theta_{0}\right)$

Case Study

- ICU-Alarm network
- 37 variables
- 504 params
- Experiment

- Sample instances from network
- Relearn parameters

Case Study: ICU Alarm Network

Daphne Koller

Summary

- In Bayesian networks, if parameters are independent a priori, then also independent in the posterior
- For multinomial BNs, estimation uses sufficient statistics $M[x, u]$

$$
\begin{array}{cc}
\hat{\theta}_{x \mid u}=\frac{M[x, \boldsymbol{u}]}{M[\boldsymbol{u}]} & E(x \mid \boldsymbol{u}, D)=\frac{\alpha_{x, u}+M[x, \boldsymbol{u}]}{\alpha_{u}+M[\boldsymbol{u}]} \\
\text { MLE } & \text { Bayesian (Dirichlet) }
\end{array}
$$

- Bayesian methods require choice of prior
- can be elicited as prior network and equivalent sample size

What if you do not know the graph

Graph G captures the qualitative causal relations

JPD J encodes the quantitative probabilistic properties

		CVD		
Yellow Teeth	Smoking	Y	N	
Y	Y	0.17	0.06	0.13
N	Y	0.06	0.02	0.08
Y	N	0.02	0.06	0.08
N	N	0.15	0.46	0.61
		0.4	0.6	1

Markov Condition (MC):

Every variable is independent of its non-descendants in the graph given its parents.

Faithfulness

Faithfulness Condition:

Independences stem only from the structure, not the parameterization of the distribution.
We say that the graph and the distribution are faithful to each other.

MC
MC+FAITHFULNESS

$$
\operatorname{DSep}(A, B \mid \mathbf{Z}) \text { in } G \Rightarrow \mathrm{~A} \Perp \mathrm{~B} \mid \mathbf{Z} \text { in } J
$$

$$
\operatorname{DSep}(A, B \mid \mathbf{Z}) \text { in } G \Leftrightarrow \mathrm{~A} \Perp \mathrm{~B} \mid \mathbf{Z} \text { in } J
$$

Faithfulness

The parameters do not cancel each other out!

Faithfulness

Is it realistic?
Assume you are given a graph and you select the parameters of the conditional probability tables randomly following a Dirichlet distribution. The probability you get a non-faithful BN is zero (Lebesque measure is zero).

Faithfulness

Is it realistic?
Probable causes of non-faithfulness:
Too low associations are not detectable for finite samples.
Too high correlations (determinism or close-to-determinism).
Natural selection may be biasing towards creating non-faithful distributions in systems in nature (e.g.. cells)!
Not all joint probability distributions have a faithful representation.
The probability of getting an almost non-faithful distribution is non-zero.

Markov Condition + Faithfulness

The edge is a d-connecting path that can not be broken given any other variables.

A useful implication of the Markov Condition
If X, Y are adjacent in the graph, then $\nexists \boldsymbol{Z}$ s.t. $(X, Y \Perp \boldsymbol{Z})$. If $\exists \boldsymbol{Z}$ s.t. $(X, Y \Perp \boldsymbol{Z}), \mathrm{X}$ and Y are NOT adjacent in the graph.

An edge denotes unique information (given all other variables)

Bayesian Networks (BNs)

Graph G

		CVD		
Yellow Teeth	Smoking	Y	N	
Y	Y	0.17	0.06	0.13
N	Y	0.06	0.02	0.08
Y	N	0.02	0.06	0.08
N	N	0.15	0.46	0.61
		0.4	0.6	1

Markov Condition + Faithfulness =
Independence \leftrightarrow D-separation

Reverse-engineering the graph

What you want

What you have

Sample (Person)	Smoking	CVD	Yellow Teeth
1	Yes	Yes	No
2	No	No	No
3	Yes	Yes	Yes
4	No	No	Yes
5	Yes	No	No
6	No	Yes	Yes

Testing (In)Dependencies

Hypothesis Testing

- Identify the research question
- Writing the statistical hypotheses in terms of parameters of interest.
- Collect data and calculate a statistic
- Find the distribution of the statistic under the null hypothesis
- Find the p-value (probability that the result we got or a more extreme one happens just by chance given that the null hypothesis is true).
- Decide if the p-value is small or large
- Reject if p-value is lower than the significance threshold a.

Testing (In)Dependencies

Hypothesis Testing

- Identify the research question Is smoking independent from CVD?
- Writing the statistical hypotheses in terms of parameters of interest.
$\mathrm{P}($ smoking,$~ C V D)=P($ smoking $) P(C V D)$
- Collect data and calculate a statistic
- Find the distribution of the statistic under the null hypothesis
- Find the p-value (probability that the result we got or a more extreme one happens just by chance given that the null hypothesis is true).
- Decide if the p-value is small or large
- Reject if p-value is lower than the significance threshold a.

Example: Independence

- You have a population of 520 people
- 160/520 smoke.
- 210/520 have CVD.

Example: Independence

Null Hypothesis $\left(\mathbf{H}_{0}\right)$: Smoking is independent of CVD
Alternative Hypothesis $\left(\mathbf{H}_{1}\right)$: Smoking is dependent of CVD
Mathematically:

$$
\begin{aligned}
& \mathbf{H}_{0}=\forall i, j \quad p_{i j}=p_{i .} \times p_{. j} \\
& \mathbf{H}_{1}=\exists i, j: \quad p_{i j} \neq p_{i .} \times p_{. j}
\end{aligned}
$$

Reminder: Independence:

$$
\forall x, y P(\mathrm{Y}=\mathrm{y}, \mathrm{X}=\mathrm{x})=P(Y=\mathrm{y}) \mathrm{P}(\mathrm{X}=\mathrm{x})
$$

$$
\begin{gathered}
p_{i j}=P(X=i, \mathrm{Y}=j) \\
p_{i .}=P(X=i) \\
p_{. j}=P(Y=j)
\end{gathered}
$$

Dependence

Pint Probability Distribution
P(CVD, Smoking $)$

Dependence

Test statistic: Expected counts

in your data

If Smoking and CVD
were independent?

Are Smoking and CVD independent?

Are Smoking and CVD independent?

Are Smoking and CVD independent?

in your sample

If Smoking and CVD
were independent?

Are Smoking and CVD independent?

Summarize the differences

- $n_{i j}$: Counts in your data (\# observations in cell i, j)
- $e_{i j}$: Expected counts under H_{0}

$$
X^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}=\sum_{i, j} \frac{\left(n_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

What is the probability of observing a value t at least as extreme as the one you observed in your data?

$$
\mathrm{p} \text {-value: } P\left(X^{2}>x_{o b s}^{2} \mid \mathrm{H}_{0}\right)
$$

The chi-square distribution

- In order to determine if the X^{2} statistic we calculated is considered unusually high or not we need to first describe its distribution.
$\mathrm{X}^{2}=\sum_{i=1}^{k} \frac{\left(N_{i}-n p_{i}^{o}\right)^{2}}{n p_{i}^{0}}$
Under the null, when $n \rightarrow \infty, \mathrm{X}^{2} \sim \chi^{2}$ with k - 1 degrees of freedom.
- The chi-square distribution has just one parameter called degrees of freedom (df), which influences the shape, center, and spread of the distribution.

Chi square Distribution

$$
P\left(X^{2}=t \mid H_{0}\right) \sim \frac{t^{\frac{d f-2}{2}} e^{-\frac{t}{2}}}{2^{\frac{d f}{2}} \Gamma\left(\frac{d f}{2}\right)},
$$

where $d f$ are the degrees of freedom, i.e. the number of parameters that are free to vary For testing $X \| Y$

$$
\begin{aligned}
& d f=(\# \text { possible values of } X-1) \times \\
& \quad(\# \text { of possible values of } Y-1) \\
& \text { in our example } d f=(2-1) \times(2-1)=1
\end{aligned}
$$

Make a Decision

Check in the pdf

 If the p-value is less than a significance threshold α, reject the null hypothesis.$$
\text { p-value: } P\left(X^{2}>\chi_{o b s}^{2} \mid \mathrm{H}_{0}\right)
$$

[^0]

Reverse-engineering the graph

What you want

Can we find the graph where the only d-separation is CVD and Yellow teeth given smoking?

What you have

You can use tests of conditional independence to identify the set of conditional independencies:

Here you only have one independence:
CVD』Yellow Teeth|Smoking
And the rest are dependencies:

Smoking \# Y Yellow Teeth $\mid \varnothing$
Smoking \#Yellow Teeth|CVD
Smoking \#CVD| \varnothing
Smoking \# $\neq C V D$ Yellow Teeth

Markov Equivalence

CVD』Yellow Teeth｜Smoking

CVD』Yellow Teeth｜Smoking

CVD』Yellow Teeth｜Smoking

Markov Condition entails the same conditional independence for all three graphs．

Markov Equivalence

CVD』Yellow Teeth｜Smoking

CVD』Yellow Teeth｜Smoking
－The graphs are called Markov Equivalent．
－All Markov equivalent graphs denote a Markov equivalence class（MEC）．
－We use［G］to denote the MEC of G．

Markov Equivalence

CVD』Yellow Teeth｜Smoking

CVD』Yellow Teeth｜Smoking

CVD』Yellow Teeth｜Smoking

Markov Equivalent Graphs share
－the same skeleton（adjacencies）．
－the same unshielded colliders

Reminder: (non) colliders

collider

non- collider

non- collider

non- collider

For a triple $X-Y-Z$:
If both edges are into Y , the triplet (and Y) is a collider. Otherwise the triplet (and Y) is a non-collider.

The term is used to denote both the triplet and the middle node!

Characterization of the Markov Equivalence Class

- Unshielded collider: A collider (X-Y-Z) where the endpoints (X, Z) are NOT adjacent.
- AKA v-structure.

Pattern DAGs

- Represents a class of Markov Equivalent DAGs.
- Has the same edges as every DAG in the class.
- Has only orientations (arrows) shared by all the DAGs in the class.
- Orient the PDAG as a DAG without creating a new collider or directed cycle!

Pattern DAGs

- You can still "read" all conditional independencies entailed by the Markov Condition in the graph using d-separation.

Reverse-engineering

Bayesian Network describing your variables

Independencies entailed by the CMC

Reverse-engineering

Causal Bayesian Network describing your variables

Independencies entailed by the MC

Reverse－engineering

Causal Bayesian Network describing your variables

Independencies entailed by the MC

CVD』Yellow Teeth｜Smoking
CVD』Yellow Teeth｜Smoking
CVD』Yellow Teeth｜Smoking
Under Faithfulness cvo \＃Yellow Teeth｜\varnothing

Smoking ŁYellow Teeth $\| \varnothing$ Smoking 旦Yellow Teeth｜CVD

Smoking $\nVdash C V D \mid \varnothing$ Smoking \＃CVD｜Yellow Teeth

CVD＿甘Yellow Teeth $\|$
 Smoking \＆Yellow Teeth｜CVD

Smoking 甘CVD $\mid \varnothing$ Smoking ఊCVD｜Yellow Teeth

CVD\＆Yellow Teeth $\| \varnothing$
Smoking 甘Yellow Teeth $\mid \varnothing$ Smoking \＆Yellow Teeth｜CVD

Smoking $\nVdash C V D \mid \emptyset$
Smoking \＃CVD｜Yellow Teeth

If you also assume faithfulness，all remaining relationships are conditional dependencies．

Reverse－engineering

Causal Bayesian Network describing your variables

Independencies entailed by the MC	CVD \Perp Yellow Teeth ${ }^{\text {Smoking }}$	CVD』Yellow Teeth Smoking $^{\text {a }}$	CVD』Yellow Teeth｜Smoking	
Under Faithfulness		CVD \＃－Yellow Teeth \mid ¢	CVD \＃－Yellow Teeth \mid ¢	Query the data to get the conditional（in） dependencies
	Smoking \＃Y Yellow Teeth $\mid \varnothing$	Smoking \＃Y Yellow Teeth $\mid \varnothing$	Smoking \＃Y Yellow Teeth｜ $\mid \varnothing$	
	Smoking 业Yellow Teeth｜CVD	Smoking 业Yellow Teeth｜CVD	Smoking \＃\＃Yellow Teeth｜CVD	
	Smoking \＃${ }_{\text {H }}$ CVD \mid ¢	Smoking \＃${ }^{\text {CVD }}$｜\varnothing	Smoking \＃${ }^{\text {CVPD }}$｜\varnothing	
	Smoking \＃\＃CVD｜Yellow Teeth	Smoking \＃\＃CVD｜Yellow Teeth	Smoking \＃\＃CVD｜Yellow Teeth	

Reverse-engineering the PDAG

Causal Bayesian Network describing your variables

Identify all DAGs that entail these (and only these) conditional independencies.

Independencies entailed by the MC	CVD \Perp Yellow Teeth \mid Smoking	CVD \Perp Yellow Teeth\|Smoking	CvD \Perp Yellow Teeth\|Smoking	
Under Faithfulness	CVD\#\#Vellow Teeth\| $¢$		CVD\#\#Vellow Teeth\| \varnothing	Query the data to get the conditional (in) dependencies
	Smoking \# Y $^{\text {Yellow }}$ Teeth $\mid \varnothing$ Smoking \#\#Yellow Teeth ICVD	Smoking \#\#Yellow Teeth $\mid \varnothing$ Smoking \# H Yellow Teeth\|CVD	Smoking \#yYellow Teeth $\mid \varnothing$ Smoking \#YYellow Teeth\|CVD	
		Smoking \# H CVD $\mid \varnothing$ Smoking \# CVD\|Yellow Teeth	Smoking \#CVD $\mid \varnothing$	

Learning Bayesian Networks is NPcomplete

How many possible DAGs?

\# variables	\# Possible DAGs
2	3
3	25
4	543
5	29,281
10	$O\left(10^{18}\right)$

$G(n)=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} 2^{k(n-k)} G(n-k)$
[Gillespie and Perlman 2001, 2002]

UAI 2001

Enumerating Markov Equivalence Classes of Acyclic Digraph Models

Reverse-engineering

Causal PDAG

 describing your variables

```
Identify all
PDAGs that
entail these (and
only these)
conditional
independencies.
```

Independencies entailed by the MC

CVD』Yellow Teeth \mid Smoking

Under Faithfulness cvo \Perp Yellow Teeth| $\mid \varnothing$

Smoking \# Y Yellow Teeth $\mid \varnothing$
Smoking 卆Yellow Teeth|CVD
Smoking $\nVdash C V D \mid \varnothing$
Smoking \#CVD|Yellow Teeth

Query the data
to get the conditional (in) dependencies

Still NP-Complete

How many possible PDAGs?

\# variables	\# Possible DAGs	\# Possible PDAGs
2	3	2
3	25	11
4	543	185
5	29,281	8,782
10	$O\left(10^{18}\right)$	$1,118,902,054,495,975,141$

UAI 2001 GILLISPIE \& PERLMAN
$G(n)=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} 2^{k(n-k)} G(n-k)$

$$
G^{\prime}(n) \sim 0.267 \times G(n)
$$

[Gillespie and Perlman 2001, 2002]

Learning BNs : Constraint-based approach

Good news:
You can identify all invariant characteristics of a Markov equivalence class of causal Bayesian networks that faithfully represent the conditional independencies in your data.
Bad news:
There are too many possible networks (DAGs/PDAGs).
There may not be a faithful representation.

You need:
A search strategy.
A test of conditional independence suitable for your data.

Reminder : Markov Condition +

Faithfulness

The edge is a d-connecting path that can not be broken given any other variables.

A useful implication of the Markov Condition

If X, Y are adjacent in the graph, then $\nexists \boldsymbol{Z}$ s.t. $\mathrm{X} \Perp \mathrm{Y} \mid \boldsymbol{Z}$.
If $\exists \boldsymbol{Z}$ s.t. $\mathrm{X} \Perp \mathrm{Y} \mid \boldsymbol{Z}, \mathrm{X}$ and Y are NOT adjacent in the graph.

```
You find a conditional independence X \Perp Y| Z
if and only if
X and }Y\mathrm{ are not adjacent in the DAG.
```


Learning the skeleton of a BN

Search strategy:
Identify the skeleton of your PDAG:
Begin with the full graph.
For each pair of variables:
For each pair of adjacent variables look for a set of observed variabl، 2^{N-2} tests of independence.
If you find succeed, remove X-Y.
Until no more edges can be removed.
Assume you have 20
variables. You may need to condition on 18 variables, which means 2^{18} possible configurations of the conditioning set.

[^1]
Learning the skeleton of a BN

Search strategy:
Identify the skeleton of your PDAG:
Begin with the full graph.
For each pair of adjacent variables look for a set of observed variables \mathbf{Z} such that $\mathrm{X} \Perp \mathrm{Y} \mid \mathbf{Z}$.
If you find succeed, remove X-Y.
Until no more edges can be removed.
Theorem (Spirtes and Glymour, 1993): If S_{G} is the skeleton of the true DAG and $S_{G^{\prime}}$ has a superset of edges, then the separating set of X, Y is a subset of the neighbors of X or Y in $S_{G^{\prime}}$.

- You do not know the neighbors of each node.
- You begin with the full graph, so at each step of the algorithm you each variable is adjacent to a superset of its real neighbors.
- As you remove edges, the neighbor sets are reduced.
- You only have to check the adjacent nodes of X or Y at the current step of the algorithm.
- For a sparse graph, this really speeds up the skeleton search.
- Worst-case complexity is still exponential.

Learning the skeleton of a BN : PC algorithm

```
Search strategy:
    Identify the skeleton of your PDAG:
        Begin with the full graph.
        For k=0:number of variables-2 (or until k greater than the size of any neighborhood)
            For each pair of adjacent variables X, Y,
                Look within Adjacencies(X)\Y or Adjacencies(Y)\X for a set of k observed variables Z such that X\Perp YY|Z.
            If you succeed, remove X-Y
Essentially three loops: conditioning set size, pairs, conditioning sets
```


Learning the skeleton of a BN : PC algorithm

Search strategy:
Identify the skeleton of your PDAG:
Begin with the full graph.
For $\mathrm{k}=0$:number of variables-2 (or until k greater than the size of any neighborhood)
For each pair of adjacent variables X, Y,
Look within Adjacencies $(X) \backslash Y$ or Adjacencies $(Y) \backslash X$ for a set of k observed variables Z such that $X \Perp Y \mid Z$.
If you succeed, remove $X-Y$
Essentially three loops: conditioning set size, pairs, conditioning sets

How do you pick which edges/neighbors to try first?

- Naïve choice: lexicographic order
- Smart choice: (HEURISTIC 3, Causation, Prediction and Search, 1993):

You want to remove edges (X, Y) and you are looking for conditioning sets within Adjacencies $(X) \backslash Y$.
-Start from the pair (X, Y) with the weakest pairwise association.
(weakest pairwise association more likely corresponds to non-adjacent variables)
-Start from the neighbor with the highest pairwise association with X (or Y).
(variables strongly associated with X are more probable to be neighbors/mediators on the path from X to

Learning the skeleton of a BN

- Search strategy:
- Identify the skeleton of your PDAG:
- Begin with the full graph.
- For k=0:number of variables -2
- Using heuristic 3
- For each pair of adjacent variables X, Y,
- look within Adjacencies $(X) \backslash Y$ or Adjacencies $(Y) \backslash X$ for a set of k observed variables \mathbf{Z} such that $\mathrm{X} \Perp \mathrm{Y} \mid \mathbf{Z}$.
- If you succeed, remove X-Y.

You have identified the skeleton of your graph!

This is the skeleton identification step of the PC algorithm, introduced in 1993 by Peter Spirtes and Clark Glymour.

PC Algorithm - an example

Dataset measuring your variables.
TRUE, UNKNOWN causal DAG

Let's see an example of the PC algorithm skeleton identification step.
Assuming:

1. You have a data-set of measuring Yellow Teeth, Smoking, Medicine Y, Levels of Protein X and CVD in a sample of people.
2. MC and Faithfulness hold for your distribution and the causal DAG.
3. Your threshold for statistical significance is 0.05

PC Algorithm - an example

1. Begin with the full graph.

True (unknown) graph

PC Algorithm - an example

2. $k=0$

True (unknown) graph

PC Algorithm - an example

$$
\text { 2. } \mathrm{k}=0
$$

Tests attempted	\boldsymbol{p}-value
Yellow Teeth, Smoking	0.00002

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024
Medicine Y, Protein X	0.00007

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024
Medicine Y, Protein X	0.00007

You want to identify the least correlated variables Since all variables are binary, you can check the p -values (in decreasing order)

PC Algorithm - an example

	Tests attempted
p-value	
	Yellow Teeth, Smoking
	Yellow Teeth, CVD
	0.00002
	Yellow Teeth, Medicine Y
Yellow Teeth, Protein X	0.00384
	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
	CVD, Protein X

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024
Medicine Y , Protein X	0.00007

True (unknown) graph

Yellow Teeth, CVD are the least associated variables
Adjacent(Yellow Teeth) \CVD $=\{$ Smoking, Protein X $\}$

PC Algorithm - an example

	Tests attempted
	p-value
Yellow Teeth, Smoking	0.00002
	Yellow Teeth, CVD
	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024
Medicine Y, Protein X	0.00007

True (unknown) graph

Yellow Teeth, CVD are the least associated variables
Adjacent(Yellow Teeth) \CVD $=\{$ Smoking, Protein X $\}$
Yellow Teeth, Smoking are the most associated variables

PC Algorithm - an example

	Tests attempted
	p-value
Yellow Teeth, Smoking	0.00002
	Yellow Teeth, CVD
	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00015
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00012
CVD, Protein X	0.00024
	Medicine Y, Protein X

Tests attempted	\mathbf{p}-value
Yellow Teeth, CVD \mid Smoking	0.78961

Yellow Teeth, CVD are the least associated variables
Adjacent(Yellow Teeth) \CVD $=\{$ Smoking, Protein X $\}$
Yellow Teeth, Smoking are the most associated variables

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, CVD\| Smoking	0.78961

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, CVD \mid Smoking	0.78961
CVD, Medicine $Y \mid$ Protein X	0.15092

CVD, Medicine Y are the least associated variables
Adjacent(CVD)\Medicine $Y=\{$ Smoking, Protein X\}
CVD, Protein X are the most associated variables

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth,CVB	0.00384
Yellow Teeth, Medicine Y	0.54501
	Yellow Teeth, Protein X
Smoking, CVD	0.00056
Smoking, Medicine Y	0.00035
Smoking, Protein X	0.36458
CVD, Medicine Y	0.00003
CVD, Protein X	0.00062
Medicine Y, Protein X	0.00014

Tests attempted	p-value
Yellow Teeth, CVD \mid Smoking	0.78961
CVD, Medicine $Y \mid$ Protein X	0.15092

Yellow Teeth, Protein X are the least associated variables
Adjacent(Yellow Teeth) \backslash Protein $X=\{$ Smoking $\}$

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth,CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
	Yellow Teeth, Protein X
	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, AMedicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	

Yellow Teeth, Protein X are the least associated variables
Adjacent(Yellow Teeth) \Protein $X=\{$ Smoking $\}$

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y , Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \\| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \\| Smoking	0.23567	

Smoking, CVD are the least associated variables
Adjacent(Smoking)\CVD= \{Yellow Teeth, Protein X\}
Smoking, Yellow Teeth are the most associated variables

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVB	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein*	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y , Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \\| Smoking	0.78961	
CVD, Medicine Y\| Protein X	0.15092	
Yellow Teeth, Protein $\mathrm{X} \mid$ Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	

Smoking, CVD are the least associated variables
Adjacent(Smoking)\CVD= \{Yellow Teeth, Protein X\}
Smoking, Yellow Teeth are the most associated variables

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
YellowTeeth, Protein $*$	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
EVD, Medicine ${ }^{\text {Y }}$	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365

Smoking, CVD are the least associated variables
Adjacent(Smoking)\CVD= \{Yellow Teeth, Protein X\}
Smoking, Protein X are the next most associated variables

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow-eeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein ${ }^{\text {K }}$	0.00056
Smoking, CVP	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
EVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365

CVD, Protein X are the least associated variables
Adjacent(CVD) \Protein $X=\{ \}$

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein K	0.00056
Smoking, CVP	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
EVD,Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365

CVD, Protein X are the least associated variables
Adjacent(Protein $X) \backslash C V D=\{$ Smoking, Medicine $Y\}$

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
YellowTeeth, Protein X	0.00056
Smoking, VVP	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
EVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein X \| Smoking	0.00045

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value	
Yellow Teeth, CVD \\| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	

True (unknown) graph

PC Algorithm - an example

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein*	0.00056
Smoking, CVP	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein $*$	0.00014
Medicine Y , Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine $Y \mid$ Protein X	0.15092
Yellow Teeth, Protein $X \mid$ Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein $X \mid$ Smoking	0.00045
CVD, Protein $X \mid$ Medicine Y	0.00389
Medicine Y, Protein X\|CVD	0.00972
Smoking, Protein $X \mid$ Yellow Teeth	0.00126
Smoking, Protein X CVD	0.00438
Yellow Teeth, Smoking \|Protein X	0.00072

True (unknown) graph

PC Algorithm - an example

Only Protein X has two neighbors.

Tests attempted	p-value
Yellow Teeth,_Smoking	0.00002
Yellow Teeth,CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth,Protein X	0.00056
Smoking,CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD,Medicine-Y	0.00062
CVD,Protein X	0.00014
Aledicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \\| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	
Medicine Y, Protein X\|CVD	0.00972	
Smoking, Protein X \| Yellow Teeth	0.00126	
Smoking, Protein X\|CVD	0.00438	
Yellow Teeth, Smoking \|Protein X	0.00072	

PC Algorithm - an example

Only Protein X has two neighbors

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Maclicine 7	0.00062
CVD, Protein X	0.00014
Aldicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \\| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \\| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \\| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \\| Medicine Y	0.00389	
Medicine Y, Protein X\|CVD	0.00972	
Smoking, Protein X \| Yellow Teeth	0.00126	
Smoking, Protein X\|CVD	0.00438	
Yellow Teeth, Smoking \|Protein X	0.00072	

True (unknown) graph

Tests attempted	p -value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein $X \mid C V D$, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

PC Algorithm - an example

No variable has four neighbors.

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVP	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVP	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein $*$	0.00003
CVD, Macelicine Y	0.00062
CVD, Protein X	0.00014
Aledicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \\| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	
Medicine Y, Protein X\|CVD	0.00972	
Smoking, Protein X \| Yellow Teeth	0.00126	
Smoking, Protein X\|CVD	0.00438	
Yellow Teeth, Smoking \|Protein X	0.00072	

True (unknown) graph

Tests attempted	p -value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein $X \mid C V D$, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

PC Algorithm - an example

No more edges can be removed.

You have (correctly) identified the skeleton of your graph

Tests attempted	p-value
CVD, Protein X\| Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein X\| Smoking, CVD	0.00074

For causal discovery, you also want to identify some edge directions!

PC Algorithm - an example

Smoking and Medicine Y are independent given the empty set.

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	$\mathbf{0 . 3 6 4 5 8}$
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD\| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein X \| Smoking	0.00045
CVD, Protein X \| Medicine Y	0.00389
Medicine Y , Protein $\mathrm{X} \mid$ CVD	0.00972
Smoking, Protein X \| Yellow Teeth	0.00126
Smoking, Protein X\|CVD	0.00438
Yellow Teeth, Smoking \mid Protein X	0.00072

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein $X \mid$ CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

PC Algorithm - an example

Smoking and Medicine Y are independent given the empty set.

You would expect a dependence
Smoking \nVdash Medicine $Y \mid \emptyset$
(i.e. a p-value <0.05)

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	$\mathbf{0 . 3 6 4 5 8}$
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD\| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X S Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein $\mathrm{X} \mid$ Smoking	0.00045
CVD, Protein $\mathrm{X} \mid$ Medicine Y	0.00389
Medicine Y, Protein $\mathrm{X} \mid$ CVD	0.00972
Smoking, Protein X \| Yellow Teeth	0.00126
Smoking, Protein X\|CVD	0.00438
Yellow Teeth, Smoking\|Protein X	0.00072

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein $X \mid$ CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

PC Algorithm - an example

Smoking and Medicine Y are independent given the empty set.

Thus, the triple must be a collider!

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	$\mathbf{0 . 3 6 4 5 8}$
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD\| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X S Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein $\mathrm{X} \mid$ Smoking	0.00045
CVD, Protein $X \mid$ Medicine Y	0.00389
Medicine Y, Protein $\mathrm{X} \mid$ CVD	0.00972
Smoking, Protein X \| Yellow Teeth	0.00126
Smoking, Protein $\mathrm{X} \mid$ CVD	0.00438
Yellow Teeth, Smoking \|Protein X	0.00072

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein $X \mid$ CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

Unshielded colliders in BNs

Causal Bayesian Network describing your variables

Independencies entailed by the CMC

You DON'T need Y to $d-$ separate X and Z
You need Y to d-separate X and Z
In fact, conditioning on Y would make X, Z dependent

Unshielded colliders in BNs

Causal Bayesian Network describing your variables

Independencies entailed by the CMC

You need Y to d-separate X and Z
if $X-Z-Y$ form an unshielded triplet, you can distinguish whether the triplet is a collider or a non-collider.

You DON'T need Y to $d-$ separate X and Z

$$
\begin{aligned}
& X \Perp Z \mid\{\ldots\} \\
& X \Perp Z \mid\{Y \ldots\}
\end{aligned}
$$

In fact, conditioning on Y would make X, Z dependent

Orientation rules

Orient Unshielded Colliders

Away from collider

Orientation rules

The PC algorithm

Search strategy:
Identify the skeleton of your PDAG:
Begin with the full graph.
For $\mathrm{k}=0$:number of variables -2
Using heuristic 3
For each pair of adjacent variables X, Y,
look within Adjacencies $(X) \backslash Y$ or Adjacencies $(Y) \backslash X$ for a set of k observed variables Z such that $X \Perp Y \mid Z$. If you succeed, remove X - Y.
Orient all invariant edges of the Markov Equivalence class
Apply RO
While no more rules are applicable, apply R1-R3

PC Algorithm - an example

Apply orientation rules

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	

Tests attempted	p-value
CVD, Protein X\| Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein X\| Smoking, CVD	0.00074

True (unknown) graph

PC Algorithm - an example

Apply orientation rules

Orient unshielded colliders

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	

Tests attempted	p -value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

Smoking-Protein X-Medicine Y is a collider
True (unknown) graph

PC Algorithm - an example

Apply orientation rules

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	

Orient unshielded colliders

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

Yellow Teeth-Smoking-Protein X is a non collider

True (unknown) graph

PC Algorithm - an example

Apply orientation rules

Orient unshielded colliders
Smoking-Protein X- CVD is a non collider

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein X \| Smoking, CVD	0.00074

True (unknown) graph

PC Algorithm - an example

Apply orientation rules

Orient unshielded colliders

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value	
Yellow Teeth, CVD \| Smoking	0.78961	
CVD, Medicine Y \\| Protein X	0.15092	
Yellow Teeth, Protein X \| Smoking	0.23567	
Smoking, CVD \|Yellow Teeth	0.00345	
Smoking, CVD \| Protein X	0.12365	
CVD, Protein X \| Smoking	0.00045	
CVD, Protein X \| Medicine Y	0.00389	

Tests attempted	p-value
CVD, Protein X\| Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein X\| Smoking, CVD	0.00074

Medicine Y-Protein X- CVD is a non collider

True (unknown) graph

PC Algorithm - an example

Apply orientation rules

Away from collider

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein X \| Smoking	0.00045
CVD, Protein X \| Medicine Y	0.00389

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein $X \mid$ Smoking, CVD	0.00074

PC Algorithm - an example

Apply orientation rules

No more rules are applicable

Tests attempted	p-value
Yellow Teeth, Smoking	0.00002
Yellow Teeth, CVD	0.00384
Yellow Teeth, Medicine Y	0.54501
Yellow Teeth, Protein X	0.00056
Smoking, CVD	0.00035
Smoking, Medicine Y	0.36458
Smoking, Protein X	0.00003
CVD, Medicine Y	0.00062
CVD, Protein X	0.00014
Medicine Y, Protein X	0.00007

Tests attempted	p-value
Yellow Teeth, CVD \| Smoking	0.78961
CVD, Medicine Y \| Protein X	0.15092
Yellow Teeth, Protein X \| Smoking	0.23567
Smoking, CVD \|Yellow Teeth	0.00345
Smoking, CVD \| Protein X	0.12365
CVD, Protein X \| Smoking	0.00045
CVD, Protein X \| Medicine Y	0.00389

Tests attempted	p-value
CVD, Protein $X \mid$ Smoking, Medicine Y	0.02356
Smoking, Protein X\|CVD, Medicine Y	0.00498
Medicine Y, Protein X \| Smoking, CVD	0.00074

PC Algorithm output

PDAG returned by the PC algorithm

PC algorithm

Introduced by Peter Spirtes and Clark Glymour in 1993. One of the first algorithms to perform causal discovery from cross-sectional data.
Uses a complete set of orientation rules and therefore identifies the PDAG that faithfully represents the conditional independencies it identifies.

The PDAG is maximally informative, in the sense that every un-oriented edge has different orientations in different DAGs in the Markov Equivalence class.
Most current constraint-based algorithms are extensions/improvements of the PC algorithm.

PC algorithm

Remember the assumptions:

Causal Markov Condition.
Faithfulness.
Acyclicity.
Causal Sufficiency (no hidden confounders).

INPUT

OUTPUT

PC Algorithm - Complexity

Suppose that the maximum number of parents for any variable in the graph is k.
Then the worst-case number of tests of conditional independence performed by PC is:

$$
2\left(\frac{n}{2}\right) \sum_{i=0}^{k}\left(\frac{n-1}{i}\right)
$$

which is bounded by

$$
\frac{n^{2}(n-1)^{k-1}}{(k-1)!}
$$

i.e., polynomial to the number of variables, exponential to the maximum number of parents.

Learning causal networks as a model selection problem

Identify all DAGs that maximize the posterior probability of the graph given the data: $\mathrm{P}(\mathrm{G} \mid \mathrm{D})$ (or some other data-fitting criterion in general)

Posterior probability of the graph

Posterior probability of the graph

Scoring function

Find G: $\quad \operatorname{argmax}_{G} P(D \mid G) \times P(G)$

Scoring function

Find G: $\quad \operatorname{argmax}_{G} P(D \mid G) \times P(G)$

Scoring function

Scoring function

The parameterization depends on the graphical structure.

Scoring function

$$
P(D \mid G)=\int_{\boldsymbol{\theta}} P\left(D \mid \boldsymbol{\theta}_{\boldsymbol{x} \mid \boldsymbol{p a}(\boldsymbol{x})}\right) f(\boldsymbol{\theta}) d \boldsymbol{\theta}=
$$

Scoring function

$$
P(D \mid G)=\int_{\boldsymbol{\theta}} P\left(D \mid \boldsymbol{\theta}_{\boldsymbol{x} \mid \boldsymbol{p a}(\boldsymbol{x})}\right) f(\boldsymbol{\theta}) d \boldsymbol{\theta}=
$$

$$
\prod_{x} \int_{\theta_{x \mid p a(x)}} P\left(D \mid \theta_{x \mid p a(x)}\right) f\left(\theta_{x \mid p a(x)}\right) d \theta_{x \mid p a(x)}
$$

- Score is decomposable:
- It is a product of terms involving only a variable and its parents.

Scoring function

$$
\begin{aligned}
& P(D \mid G)=\int_{\boldsymbol{\theta}} P\left(D \mid G, \boldsymbol{\theta}_{\boldsymbol{x} \mid \boldsymbol{p}(\boldsymbol{x})}\right) f(\boldsymbol{\theta}) d \boldsymbol{\theta}= \\
& \prod_{x} \int_{\theta_{x \mid p a(x)}} P\left(D \mid G, \theta_{x \mid p a(x)}\right) f\left(\theta_{x \mid p a(x)}\right) d \theta_{x \mid p a(x)} \\
& \int_{\theta_{s}} P\left(D \mid \theta_{s}\right) f\left(\theta_{s}\right) d \theta_{s} \int_{\theta_{c \mid n s}} P\left(D \mid \theta_{c \mid s}\right) f\left(\theta_{c \mid s}\right) d \theta_{c \mid s} \int_{\theta_{c \mid n s}} P\left(D \mid \theta_{c \mid n s}\right) f\left(\theta_{c \mid n s}\right) d \theta_{c \mid n s}
\end{aligned}
$$

Scoring function

$$
P(D \mid G)=\int_{\boldsymbol{\theta}} P\left(D \mid G, \boldsymbol{\theta}_{\boldsymbol{x} \mid \boldsymbol{p a}(\boldsymbol{x})}\right) f(\boldsymbol{\theta}) d \boldsymbol{\theta}=
$$

$$
\prod_{x} \int_{\theta_{x \mid p a(x)}} P\left(D \mid G, \theta_{x \mid p a(x)}\right) f\left(\theta_{x \mid p a(x)}\right) d \theta_{x \mid p a(x)}
$$

$$
\int_{\theta_{s}} P\left(D \mid \theta_{s}\right) f\left(\theta_{s}\right) d \theta_{s} \int_{\theta_{c \mid n s}} P\left(D \mid \theta_{c \mid s}\right) f\left(\theta_{c \mid s}\right) d \theta_{c \mid s} \int_{\theta_{c \mid n s}} P\left(D \mid \theta_{c \mid n s}\right) f\left(\theta_{c \mid n s}\right) d \theta_{c \mid n s}
$$

	$\mathrm{P}(\mathrm{CVD})$	
Smoking	Yes	No
Yes	$\theta_{C \mid S}$	$1-\theta_{C \mid S}$
No	$\theta_{C \mid N S}$	$1-\theta_{C \mid N S}$

This score can be computed in closed form for some families of distributions that have conjugate

Scoring function

You have observed 0 smokers and 0 non smokers. (Prior)

Reminder: Bayesian Statistics.

Scoring function

You then observe 2 smokers and 6 non-smokers. Bayesian Update :

Reminder: Bayesian Statistics.

Scoring function

You then observe 2 smokers and 6 non-smokers. Bayesian Update:

Bayesian Statistics.

Scoring function

You then observe 2 smokers and 6 non-smokers. Posterior:

You now believe that the proportion of smokers to non smokers is close to 3:7

Bayesian Statistics.

Scoring function

$$
\begin{aligned}
\int_{\theta_{S}} P\left(D \mid \theta_{s}\right) f\left(\theta_{s}\right) d \theta_{s} & =\int_{\theta_{S}} \prod_{i}\left(X_{i} \mid \theta_{s}\right) f\left(\theta_{s}\right) d \theta_{s}= \\
\frac{\Gamma(2) \Gamma(6)}{\Gamma(8)} & =0.0238
\end{aligned}
$$

Example Search Strategy (Greedy Search)

Initialize G as the empty/full/random graph and score. Score all networks that can be produced by G with a single change: adding/removing/reversing an edge, ensuring G remains a DAG (no cycles). Keep the change that resulted in the highest-scoring network.
Until no single action improves the score.

Example Search Strategy (Greedy Search)

Search-and-Score CBN learning

Other search strategies are possible.

e.g. BFS, DFS, Genetic algorithms, TABU search.

You can search in the space of PDAGs.
e.g. GES algorithm, (Chickering, 1996)

You may get stuck in local minima.
Avoid by random restarts, simulated annealing, stochastic greedy search.
Exact methods exist for actually scoring all possible networks (e.g. Koivisto and Sood, 2004)

Using dynamic programming \& bounded number of parents per variable.
$O\left(n 2^{n}\right)$ space + time complexity, not possible for more than $\sim 20-40$ variables.

Comparison

Constraint-Based
Easier to extend to different types of data (e.g., censored).
Easier to extend to networks with latent variables (next time).
More efficient in learning the skeleton of the network.

Search-and-score Robust to small samples.
Easier to incorporate priors on the networks.
Better in identifying the edge orientations.
Exact methods also exist, limited to $\sim 20-40$ variables.

Study Material

P Spirtes, C Glymour, R Scheines. Causation, Prediction and Search, MIT press, 2001.

Cooper, Gregory F., and Edward Herskovits. "A Bayesian method for the induction of probabilistic networks from data." Machine learning 9.4 (1992): 309-347.

Carvallo, A.M. Scoring functions for learning Bayesian networks, INESC-ID Tec. Rep. 54/2009 (2009).

Tsamardinos, I., Brown, L. E. \& Aliferis, C. F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31-78 (2006).

Cooper, G. F. \& Yoo, C. Causal Discovery from a Mixture of Experimental and Observational Data. (UAI 1999) 10, 116-125 (1999).

[^0]: Now you can decide if you will reject H_{o} or not.
 You can decide if X and Y are independent (given Z)

[^1]: You need a MANY samples For finite sizes, very low power, tests that cannot be performed.

