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Summary: Gibbs Sampling

• Converts the hard problem of inference to a  
sequence of “easy” sampling steps

• Pros:
– Probably the simplest Markov chain for PGMs
– Computationally efficient to sample

• Cons:
– Only applies if we can sample from product of factors
– Often slow to mix, esp. when probabilities are very high
– How can you move away from the current space?



Reversible Chains

Detailed Balance Equation:

𝜋 𝑥 𝑇 𝑥 → 𝑥! = 𝜋 𝑥! 𝑇(𝑥! → 𝑥)

Definition: A Markov Chain is reversible if it satisfies the detailed 
balance equation for a unique distribution 𝜋



Reversible Chains

Detailed Balance Equation:

𝜋 𝑥 𝑇 𝑥 → 𝑥! = 𝜋 𝑥! 𝑇(𝑥! → 𝑥)

Definition: A Markov Chain is reversible if it satisfies the detailed 
balance equation for a unique distribution 𝜋

𝜋 𝑥! 𝑇 𝑥! → 𝑥" = 𝜋 𝑥" 𝑇(𝑥" → 𝑥!)



Metropolis Hastings Chain
Proposal distribution 𝑄(𝑥 → 𝑥’)

Acceptance probability: 𝐴(𝑥 → 𝑥’)

• At each state 𝑥, sample 𝑥’ from 𝑄(𝑥 → 𝑥’)

• Accept proposal with probability A(𝑥 → 𝑥’)
– If proposal accepted, move to 𝑥’
–Otherwise stay at 𝑥

𝑇 𝑥 → 𝑥! = 𝑄 𝑥 → 𝑥’ 𝐴 𝑥 → 𝑥’ , 𝑖𝑓 𝑥 ≠ 𝑥′
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𝑇 𝑥 → 𝑥 = 𝑄(𝑥 → 𝑥) + )
"#"!

𝑄 𝑥 → 𝑥! [1 − 𝐴 𝑥 → 𝑥! ]



Acceptance Probability

Construct A such that detailed balance holds

𝜋(𝒙)𝑇 𝒙 → 𝒙/ = 𝜋 𝒙/ 𝑇 𝒙/ → 𝒙

𝜋 𝒙 𝑄 𝒙 → 𝒙/ 𝐴 𝒙 → 𝒙/ = 𝜋 𝒙/ 𝑄 𝒙/ → 𝒙 𝐴 𝒙/ → 𝒙

𝐴 𝒙 → 𝒙/

𝐴 𝒙/ → 𝒙
=
𝜋 𝒙/ 𝑄 𝒙/ → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙/



Acceptance Probability

Construct A such that detailed balance holds

𝜋(𝒙)𝑇 𝒙 → 𝒙/ = 𝜋 𝒙/ 𝑇 𝒙/ → 𝒙

𝜋 𝒙 𝑄 𝒙 → 𝒙/ 𝐴 𝒙 → 𝒙/ = 𝜋 𝒙/ 𝑄 𝒙/ → 𝒙 𝐴 𝒙/ → 𝒙

𝐴 𝒙 → 𝒙/

𝐴 𝒙/ → 𝒙
=
𝜋 𝒙/ 𝑄 𝒙/ → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙/

𝐴 𝑥 → 𝑥# = 𝜌
𝐴 𝑥# → 𝑥 = 1

𝐴 𝒙 → 𝒙/ = min 1,
𝜋 𝒙/ 𝑄 𝒙/ → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙/



Proposal Distiribution

• Q must be reversible:
– 𝑄 𝑥 → 𝑥+ > 0 ⇒ 𝑄 𝑥′ → 𝑥 > 0

• Opposing forces
– Q should try to spread out, to improve mixing
– But then acceptance probability often low

𝐴 𝒙 → 𝒙/ = min 1,
𝜋 𝒙/ 𝑄 𝒙/ → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙/



Theorem

Let 𝑄 be a proposal distribution, and consider the Markov 
chain defined by equations (12.25)

With 𝐴 𝒙 → 𝒙! = min 1, " 𝒙! $ 𝒙!→𝒙
"(𝒙)$ 𝒙→𝒙!

If this Markov chain is regular, then it has the stationary 
distribution 𝜋

𝑇 𝑥 → 𝑥! = 𝑄 𝑥 → 𝑥’ 𝐴 𝑥 → 𝑥’ , 𝑖𝑓 𝑥 ≠ 𝑥′

𝑇 𝑥 → 𝑥 = 𝑄(𝑥 → 𝑥) + )
"#"!

𝑄 𝑥 → 𝑥! [1 − 𝐴 𝑥 → 𝑥! ]



Example: Acceptance Probability

𝜋 𝑥! 𝑇 𝑥! → 𝑥$ = 𝜋 𝑥$ 𝑇(𝑥$ → 𝑥!)
𝜋 𝑥$ 𝑇 𝑥$ → 𝑥" = 𝜋 𝑥" 𝑇(𝑥" → 𝑥$)
𝜋 𝑥" 𝑇 𝑥! → 𝑥" = 𝜋 𝑥! 𝑇(𝑥" → 𝑥!)

If 𝑄 = 𝑇, but you want to sample from a different stationary 
distribution 𝜋! 𝑥( = 0.6, 𝜋! 𝑥) = 0.3, 𝜋! 𝑥* = 0.1

Find the Acceptance Probability



Relationship to Gibbs Sampling
Gibbs Sampling is a special case of MH

• The GS proposal distribution is
𝑄 𝑥%#, 𝐱&% ∣ 𝑥% , 𝐱&% = 𝑃 𝑥%# ∣ 𝐱&%

1𝐱&% denotes all variables except )𝐱𝐢

• Applying Metropolis-Hastings with this proposal, we obtain:

𝐴 𝑥%#, 𝐱&% ∣ 𝑥% , 𝐱&% = min 1,
𝑃 𝑥%#, 𝐱&% 𝑄 𝑥% , 𝐱&% ∣ 𝑥%#, 𝐱&%
𝑃 𝑥% , 𝐱&% 𝑄 𝑥%#, 𝐱&% ∣ 𝑥% , 𝐱&%

= min 1,
𝑃 𝑥%#, 𝐱&% 𝑃 𝑥% ∣ 𝐱&%
𝑃 𝑥% , 𝐱&% 𝑃 𝑥%# ∣ 𝐱&%

= min 1,
𝑃 𝑥%# ∣ 𝐱&% 𝑃 𝐱&% 𝑃 𝑥% ∣ 𝐱&%
𝑃 𝑥% ∣ 𝐱&% 𝑃 𝐱&% 𝑃 𝑥%# ∣ 𝐱&%

= min(1,1) = 1

GS is simply MH with a proposal that is always accepted!



Summary

• MH is a general framework for building Markov  chains with a 
particular stationary distribution
– Requires a proposal distribution
– Acceptance computed via detailed balance

• Tremendous flexibility in designing proposal  distributions that 
explore the space quickly
– But proposal distribution makes a big difference
– and finding a good one is not always easy

Gibbs Sampler is a special case of MH 



MCMC for Matching

Xi = j if i matched to j

if every Xi has  
different value

otherwise
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MH for Matching:  AugmentingPath

1) randomly pick one variable Xi
2) sample Xi, pretending that all values are available
3)pick the variable whose assignment was taken  

(conflict), and return to step 2
• When step 2 creates no conflict, modify assignment  to flip 

augmenting path

Daphne Koller
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Example Results

MH proposal 1 MH proposal 2Gibbs



Summary: Inference

Inference is about computing marginal and conditional 
distributions on a network

Exact Inference: Variable Elimination, Belief Propagation

Approximate Inference: Loopy Belief Propagation, 
Sampling-Based Inference (Forward Sampling, Importance 
Weighting, MCMC-Gibbs Sampling/MH sampling)



Approaches to learning parameters

Frequentist approach

Parameters are numbers, I will try to identify the most likely 
number given my data.

Bayesian Approach

Parameters are numbers, but I have uncertainty about them, 
so I will treat them like random variables, that have 
distributions.



Plate Models

Plate models can represent repetition

𝜃

Toss outcome 

𝜃

Outcome 1 Outcome 2 Outcome n…



Plate Models

Plate models can represent repetition

Intelligence

Grade Grade(s1) Grade(s2) Grade(sn)…

Intelligence 
(s1)

Intelligence 
(s2)

Intelligence 
(sn)

𝜃/

𝜃0



Nested Plate Models

Difficulty is a property of the course
Intelligence is a property of the course and the student

Intelligence

Grade

Difficulty



Overlapping Plate Models

Difficulty is a property of the course
Intelligence is a property of the course and the student

Intelligence

Grade

Difficulty



Why?



Collective Inference



Formal definition

A plate model ℳplate defines, for each template attribute 𝐴 ∈ ℵ with 
argument signature 𝑈5, … , 𝑈6 :
• a set of template parents

Pa7 = 𝐵5 𝑼𝟏 , … , 𝐵9 𝑼9
such that for each 𝐵: 𝑼: , we have that 𝑼: ⊆ 𝑈5, … , 𝑈6 . The variables 𝑼: are 
the argument signature of the parent 𝐵:.
• a template CPD 𝑃 𝐴 ∣ Pa7 .



Back to Learning: iid as plate models

𝜃

𝑋

𝑃 𝑥 𝑚 ∣ 𝜃

= ; 𝜃 𝑥 𝑚 = 𝑥(

1 − 𝜃 𝑥 𝑚 = 𝑥+



Maximum Likelihood Estimator

Find 𝜃 that maximizes the likelihood of the data

7𝑥: ℎ𝑒𝑎𝑑𝑠

𝑛 −7𝑥: 𝑡𝑎𝑖𝑙𝑠

𝐿 𝑥1, … , 𝑥2; 𝜃 = 𝜃∑4!(1 − 𝜃)25∑4!



Maximum Likelihood Estimator

• Observations: 𝑀, heads and 𝑀- tails
• Find 𝜃 maximizing likelihood
• Equivalent to maximizing log-likelihood 

• 𝐿𝐿 𝜃:𝑀, , 𝑀- = 𝑀,log 𝜃 +𝑀-log(1 − 𝜃)
• Differentiating the log-likelihood and solving for 𝜃:

�̂� =
𝑀,

𝑀, +𝑀.



Sufficient Statistics

For computing 𝜃 in the coin toss example, we only needed 𝑀; and 𝑀< since
𝐿(𝜃: 𝐷) = 𝜃=!(1 − 𝜃)="

𝑀; and 𝑀< are sufficient statistics

A statistic 𝑡 = 𝑇(𝑋) is sufficient for underlying parameter 𝜃 precisely if the 
conditional probability distribution of the data 𝑋, given the statistic 𝑡 = 𝑇(𝑋), 
does not depend on the parameter 𝜃.

𝑇(𝐷) = 𝑇(𝐷’) ⇒ 𝐿 𝜃;𝐷 = 𝐿(𝜃; 𝐷′)

Factorization Theorem:
𝑇 is sufficient for 𝜃 if and only if nonnegative functions 𝑔 and ℎ can be found such that

𝑓((𝑥) = ℎ(𝑥)𝑔((𝑇(𝑥))



Sufficient Statistics

Multinomial distribution
For a dataset 𝐷 over variable 𝑋 with 𝑘 values, the sufficient statistics are 
counts 𝑀5, … ,𝑀6 where 𝑀: is the # of times that 𝑋[𝑚] = 𝑥: in 𝐷

𝐿(𝜃: 𝐷) = ∏/61
7 𝜃8!

Gaussian distribution: 𝑓(𝑋) ∼ 𝑁 𝜇, 𝜎B if 𝑓(𝑋) = 5
BCD 𝑒

E#$
%&'
(

$

Rewrite as

𝑓(𝑋) =
1
2𝜋𝜎

exp −𝑥B
1
2𝜎B

+ 𝑥
𝜇
−𝜎B

−
𝜇B

2𝜎B

Sufficient statistics for Gaussian: ∑𝑥B, ∑𝑥, n



Maximum Likelihood Estimation

Maximum Likelihood Estimation

• MLE Principle: Choose 𝜃 to maximize 𝐿(𝐷: Θ)

• Multinomial MLE: E𝜃/ =
0"

∑#0#

• Gaussian MLE:
�̂� = 5

=
∑F 𝑥[𝑚]

�̂� = 5
=
∑F (𝑥[𝑚] − �̂�)B



Maximum Likelihood Estimation: Summary

- Maximum likelihood estimation is a simple principle for parameter 
selection given 𝐷

- Likelihood function uniquely determined by sufficient statistics 
that summarize 𝐷

- MLE has closed form solution for many parametric distributions



MLE for Bayes Nets

Parameters

𝜃2$ , 𝜃2% ,
𝜃3$∣2$ , 𝜃3%∣2$ , 𝜃3$∣2% , 𝜃3$∣2%

Data

X

Y

𝜃)! , 𝜃)"

𝜃*!∣)! , 𝜃*"∣)! , 𝜃*!∣)" , 𝜃*!∣)"

(𝑥(, 𝑦(), … (𝑥5 , 𝑦5)

𝑿

𝑥, 𝑥!

0.7 0.3

𝒀

𝑿 y, y!

x, 0.95 0.05

x! 0.2 0.8



MLE for Bayesian Networks

𝐿(Θ; 𝐷) = <
961

8

𝑃(𝑥[𝑚], 𝑦[𝑚]: 𝜃)

= <
961

8

𝑃(𝑥[𝑚]: 𝜃)𝑃(𝑦[𝑚] ∣ 𝑥[𝑚]: 𝜃)

<
961

8

𝑃 𝑥 𝑚 : 𝜃 <
961

8

𝑃(𝑦[𝑚] ∣ 𝑥[𝑚]: 𝜃)

𝜃": 𝑥 ∈ Val(𝑋)
𝜃$∣": 𝑥 ∈ Val(𝑋), 𝑦 ∈ Val(𝑌)

𝜃&

𝜃'|&𝑋

𝑌



MLE for Bayesian Networks

𝐿(Θ: 𝐷) =_
F

𝑃(𝑥[𝑚]: Θ)

=_
F

F

𝑃 𝑥:[𝑚] ∣ 𝑼:[𝑚]: Θ:

=_
:

_
F

𝑃 𝑥:[𝑚] ∣ 𝑼:[𝑚]: Θ:

=_
:

𝐿: 𝐷:Θ:

𝜃&

𝜃'|&𝑋

𝑌

if 𝜃D"∣∪" are disjoint, then MLE can be computed by maximizing 
each local likelihood separately
For table CPDs, further decomposition



MLE limitations

• Two teams play 10 times, and the first wins 7 of the 10 matches
⇒ Probability of first team winning = 0.7

• A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses 
⇒ Probability of heads = 0.7

• A coin is tossed 10000 times, and comes out 'heads' 7000 of the 
10000 tosses
⇒ Probability of heads = 0.7

• Before the first game, you cannot have an opinion on which team 
will win



Bayesian Inference

𝜃

𝑥1 𝑥G 𝑥2…

• Given a fixed 𝜃, tosses are independent

• If 𝜃 is unknown, tosses are not 
marginally independent

each toss tells us something about 𝜃



Bayesian Inference

𝜃

𝑥1 𝑥G 𝑥9…

• Given a fixed 𝜃, tosses are independent

• If 𝜃 is unknown, tosses are not 
marginally independent

each toss tells us something about 𝜃

𝑃 x 1 ,… , 𝑥 𝑚 , 𝜃 =

P x 1 ,… , 𝑥 𝑚 , 𝜃 𝑃 𝜃 =

𝑃(𝜃)_
:

F

𝑃 𝑥 𝑖 𝜃



Bayesian Inference for Multinomial
Dirichlet distribution

𝑓(𝜃5, … , 𝜃6 ∣ 𝛼5, … , 𝑎6) = a
1

𝐵(𝛼)
∏:K5
L 𝜃:

M)E5, 𝜃: ∈ [0,1]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝐵 𝛼 =
∏%-!
. Γ 𝛼%
Γ 𝛼,

, 𝛼, = ∑%-!. 𝛼%

𝑃(𝐷 ∣ 𝜃) = ∏:K5
6 𝜃:

=)

𝑃(𝜃) ∝ ∏:K5
6 𝜃:

M)

𝑃(𝐷|𝜃)𝑃(𝜃) ∝ ∏:K5
6 𝜃:

M)S=)

Bayesian Inference for Multinomial

Update only 
uses sufficient 
statistics



Bayesian Estimation for BNs

• Instances are independent given the parameters -
(X[m'],Y[m']) are d-separated from (X [m], 𝑌[ m]) given 𝜃

• Parameters for individual variables are independent a 
priori 𝑃(𝜃) = ∏𝑃 𝜃T)|𝑃M 𝑋:

• Posteriors for 𝜃 are also independent given the data:
• 𝑃 𝜃U, 𝜃V|T 𝐷 = 𝑃 𝜃U 𝐷 𝑃(𝜃V|T 𝐷

As in MLE, we can solve each estimation problem separately

𝜃&

𝜃'|&𝑋

𝑌



Bayesian Estimation for BNs

• Instances are independent given the parameters -
(X[m'],Y[m']) are d-separated from (X [m], 𝑌[ m]) given 𝜃

• Parameters for individual variables are independent a 
priori 𝑃(𝜃) = ∏𝑃 𝜃T)|𝑃M 𝑋:

• Posteriors for 𝜃 are also independent given the data:
• 𝑃 𝜃U, 𝜃V|T 𝐷 = 𝑃 𝜃U 𝐷 𝑃(𝜃V|T 𝐷

As in MLE, we can solve each estimation problem separately

𝜃&

𝜃'|&𝑋

𝑌

• Posteriors of 𝜃 can be computed independently
– For multinomial 𝜃&|𝒖 if prior is Dirichlet(𝑎)!|𝒖, … , 𝑎)"|𝒖)

– posterior is Dirichlet(𝑎)!|𝒖 +𝑀[𝑥*, 𝒖], … , 𝑎)"|𝒖 +𝑀[𝑥
+, 𝒖])



Equivalent Sample size

• We need hyperparameter 𝛼!|𝒖 for each node X, value x, and 

parent assignment 𝒖

– Prior network with parameters Θ,
– Equivalent sample size parameter 𝑎

– 𝛼)|𝒖 = 𝛼𝑃(𝑥, 𝒖|Θ-)



Case Study
• ICU-Alarm network
– 37 variables
– 504 params SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2
PRESS

INSUFFANESTHTPR

• Experiment
– Sample instances from network
– Relearn parameters

PCWP CO
HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOLLVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP
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Case Study: ICU Alarm Network

MLE
Bayes: a=10

0.6

0.4

0.2

1.4

1.2
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0 0
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Bayes: a=20

Bayes: a=50

Bayes: a=5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M
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Summary

• In Bayesian networks, if parameters are independent a  priori, 
then also independent in the posterior

• For multinomial BNs, estimation uses sufficient statistics 𝑀[𝑥, 𝒖]

• Bayesian methods require choice of prior
– can be elicited as prior network and equivalent sample size

Bayesian (Dirichlet)MLE

Daphne Koller

j𝜃U∣X =
𝑀[𝑥, 𝒖]
𝑀 𝒖

𝐸(𝑥|𝒖, 𝐷) =
𝛼U,X +𝑀[𝑥, 𝒖]
𝛼X +𝑀 𝒖


