Probabilistic Graphical Models

Metropolis-Hastings
Learning Parameters

Summary: Gibbs Sampling

- Converts the hard problem of inference to a sequence of "easy" sampling steps
- Pros:
- Probably the simplest Markov chain for PGMs
- Computationally efficient to sample
- Cons:
- Only applies if we can sample from product of factors
- Often slow to mix, esp. when probabilities are very high
- How can you move away from the current space?

Reversible Chains

Detailed Balance Equation:

$$
\pi(x) T\left(x \rightarrow x^{\prime}\right)=\pi\left(x^{\prime}\right) T\left(x^{\prime} \rightarrow x\right)
$$

Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π

Reversible Chains

Detailed Balance Equation:

$$
\pi(x) T\left(x \rightarrow x^{\prime}\right)=\pi\left(x^{\prime}\right) T\left(x^{\prime} \rightarrow x\right)
$$

Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π

$$
\begin{aligned}
& \pi\left(x^{1}\right)=0.2 \\
& \pi\left(x^{2}\right)=0.5 \\
& \pi\left(x^{3}\right)=0.3
\end{aligned}
$$

$$
\pi\left(x^{1}\right) T\left(x^{1} \rightarrow x^{3}\right)=\pi\left(x^{3}\right) T\left(x^{3} \rightarrow x^{1}\right)
$$

Metropolis Hastings Chain

Proposal distribution $Q\left(x \rightarrow x^{\prime}\right)$
Acceptance probability: $A\left(x \rightarrow x^{\prime}\right)$

- At each state x, sample x^{\prime} from $Q\left(x \rightarrow x^{\prime}\right)$
- Accept proposal with probability $\mathrm{A}\left(x \rightarrow x^{\prime}\right)$
- If proposal accepted, move to x^{\prime}
- Otherwise stay at x

$$
\begin{aligned}
& T\left(x \rightarrow x^{\prime}\right)=Q\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right), \text { if } x \neq x^{\prime} \\
& T(x \rightarrow x)=Q(x \rightarrow x)+\sum_{x \neq x^{\prime}} Q\left(x \rightarrow x^{\prime}\right)\left[1-A\left(x \rightarrow x^{\prime}\right)\right]
\end{aligned}
$$

Acceptance Probability

Construct A such that detailed balance holds

$$
\begin{gathered}
\pi(x) T\left(x \rightarrow x^{\prime}\right)=\pi\left(x^{\prime}\right) T\left(x^{\prime} \rightarrow \boldsymbol{x}\right) \\
\pi(x) Q\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right)=\pi\left(x^{\prime}\right) Q\left(x^{\prime} \rightarrow x\right) A\left(x^{\prime} \rightarrow \boldsymbol{x}\right) \\
\frac{A\left(x \rightarrow x^{\prime}\right)}{A\left(x^{\prime} \rightarrow x\right)}=\frac{\pi\left(x^{\prime}\right) Q\left(x^{\prime} \rightarrow \boldsymbol{x}\right)}{\pi(x) Q\left(x \rightarrow x^{\prime}\right)}
\end{gathered}
$$

Acceptance Probability

Construct A such that detailed balance holds

$$
\begin{gathered}
\pi(\boldsymbol{x}) T\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)=\pi\left(\boldsymbol{x}^{\prime}\right) T\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right) \\
\pi(\boldsymbol{x}) Q\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right) A\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)=\pi\left(\boldsymbol{x}^{\prime}\right) Q\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right) A\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right) \\
\begin{array}{c}
A\left(x \rightarrow x^{\prime}\right)=\rho \\
A\left(x^{\prime} \rightarrow x\right)=1
\end{array} \\
\frac{A\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}{A\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right)}=\frac{\pi\left(\boldsymbol{x}^{\prime}\right) Q\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right)}{\pi(\boldsymbol{x}) Q\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)} \\
A\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)=\min \left[1, \frac{\pi\left(\boldsymbol{x}^{\prime}\right) Q\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right)}{\pi(\boldsymbol{x}) Q\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}\right]
\end{gathered}
$$

Proposal Distiribution

$$
A\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)=\min \left[1, \frac{\pi\left(\boldsymbol{x}^{\prime}\right) Q\left(\boldsymbol{x}^{\prime} \rightarrow \boldsymbol{x}\right)}{\pi(\boldsymbol{x}) Q\left(\boldsymbol{x} \rightarrow \boldsymbol{x}^{\prime}\right)}\right]
$$

- Q must be reversible:
$-Q\left(x \rightarrow x^{\prime}\right)>0 \Rightarrow Q\left(x^{\prime} \rightarrow x\right)>0$
- Opposing forces
- Q should try to spread out, to improve mixing
- But then acceptance probability often low

Theorem

Let Q be a proposal distribution, and consider the Markov chain defined by equations (12.25)

$$
\begin{aligned}
& T\left(x \rightarrow x^{\prime}\right)=Q\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right) \text {, if } x \neq x^{\prime} \\
& T(x \rightarrow x)=Q(x \rightarrow x)+\sum_{x \neq x^{\prime}} Q\left(x \rightarrow x^{\prime}\right)\left[1-A\left(x \rightarrow x^{\prime}\right)\right]
\end{aligned}
$$

With $A\left(x \rightarrow x^{\prime}\right)=\min \left[1, \frac{\pi\left(x^{\prime}\right) Q\left(x^{\prime} \rightarrow x\right)}{\pi(x) Q\left(x \rightarrow x^{\prime}\right)}\right]$
If this Markov chain is regular, then it has the stationary distribution π

Example: Acceptance Probability

If $Q=T$, but you want to sample from a different stationary distribution $\pi^{\prime}\left(x^{1}\right)=0.6, \pi^{\prime}\left(x^{2}\right)=0.3, \pi^{\prime}\left(x^{3}\right)=0.1$

Find the Acceptance Probability

$$
\begin{aligned}
& \pi\left(x^{1}\right)=0.2 \\
& \pi\left(x^{2}\right)=0.5 \\
& \pi\left(x^{3}\right)=0.3
\end{aligned}
$$

$$
\begin{aligned}
& \pi\left(x^{1}\right) T\left(x^{1} \rightarrow x^{2}\right)=\pi\left(x^{2}\right) T\left(x^{2} \rightarrow x^{1}\right) \\
& \pi\left(x^{2}\right) T\left(x^{2} \rightarrow x^{3}\right)=\pi\left(x^{3}\right) T\left(x^{3} \rightarrow x^{2}\right) \\
& \pi\left(x^{3}\right) T\left(x^{1} \rightarrow x^{3}\right)=\pi\left(x^{1}\right) T\left(x^{3} \rightarrow x^{1}\right)
\end{aligned}
$$

Relationship to Gibbs Sampling

Gibbs Sampling is a special case of MH

- The GS proposal distribution is

$$
Q\left(x_{i}^{\prime}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}\right)=P\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right)
$$

(\mathbf{x}_{-i} denotes all variables except $\mathbf{x}_{\mathbf{i}}$)

- Applying Metropolis-Hastings with this proposal, we obtain:

$$
\begin{gathered}
A\left(x_{i}^{\prime}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}\right)=\min \left(1, \frac{P\left(x_{i}^{\prime}, \mathbf{x}_{-i}\right) Q\left(x_{i}, \mathbf{x}_{-i} \mid x_{i}^{\prime}, \mathbf{x}_{-i}\right)}{P\left(x_{i}, \mathbf{x}_{-i}\right) Q\left(x_{i}^{\prime}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}\right)}\right) \\
=\min \left(1, \frac{P\left(x_{i}^{\prime}, \mathbf{x}_{-i}\right) P\left(x_{i} \mid \mathbf{x}_{-i}\right)}{P\left(x_{i}, \mathbf{x}_{-i}\right) P\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right)}\right)=\min \left(1, \frac{P\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right) P\left(\mathbf{x}_{-i}\right) P\left(x_{i} \mid \mathbf{x}_{-i}\right)}{P\left(x_{i} \mid \mathbf{x}_{-i}\right) P\left(\mathbf{x}_{-i}\right) P\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right)}\right) \\
=\min (1,1)=1
\end{gathered}
$$

GS is simply MH with a proposal that is always accepted!

Summary

- MH is a general framework for building Markov chains with a particular stationary distribution
- Requires a proposal distribution
- Acceptance computed via detailed balance
- Tremendous flexibility in designing proposal distributions that explore the space quickly
- But proposal distribution makes a big difference
- and finding a good one is not always easy

Gibbs Sampler is a special case of MH

MCMC for Matching

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{i}}=\mathrm{j} \text { if(imatched to } \mathrm{J} \\
& P\left(X_{1}=v_{1}, \ldots, X_{4}=v_{4}\right) \propto \\
& \left\{\begin{array}{l}
\left(\exp \left(-\sum_{i} \operatorname{dist}(2)(2)\right)\right) \\
0
\end{array}\right.
\end{aligned}
$$

MH for Matching: AugmentingPath

1) randomly pick one variable X_{i}
2) sample X_{i}, pretending that all values are available 3) pick the variable whose assignment was taken
(conflict), and return to step 2

- When step 2 creates no conflict, modify assignment to flip augmenting path

Example Results

Summary: Inference

Inference is about computing marginal and conditional distributions on a network

Exact Inference: Variable Elimination, Belief Propagation
Approximate Inference: Loopy Belief Propagation, Sampling-Based Inference (Forward Sampling, Importance Weighting, MCMC-Gibbs Sampling/MH sampling)

Approaches to learning parameters

Frequentist approach

Parameters are numbers, I will try to identify the most likely number given my data.

Bayesian Approach

Parameters are numbers, but I have uncertainty about them, so I will treat them like random variables, that have distributions.

Plate Models

Plate models can represent repetition

Plate models can represent repetition

...

Nested Plate Models

Difficulty is a property of the course Intelligence is a property of the course and the student

Overlapping Plate Models

Difficulty is a property of the course Intelligence is a property of the course and the student

Why?

Collective Inference

Formal definition

A plate model $\mathcal{M}_{\text {plate }}$ defines, for each template attribute $A \in \aleph$ with argument signature U_{1}, \ldots, U_{k} :

- a set of template parents

$$
\mathrm{Pa}_{A}=\left\{B_{1}\left(\boldsymbol{U}_{\mathbf{1}}\right), \ldots, B_{l}\left(\boldsymbol{U}_{l}\right)\right\}
$$

such that for each $B_{i}\left(\boldsymbol{U}_{i}\right)$, we have that $\boldsymbol{U}_{i} \subseteq\left\{U_{1}, \ldots, U_{k}\right\}$. The variables \boldsymbol{U}_{i} are the argument signature of the parent B_{i}.

- a template $\operatorname{CPD} P\left(A \mid \mathrm{Pa}_{A}\right)$.

Back to Learning: iid as plate models

$$
\begin{aligned}
& P(x[m] \mid \theta) \\
& =\left\{\begin{array}{cc}
\theta & x[m]=x^{1} \\
1-\theta & x[m]=x^{0}
\end{array}\right.
\end{aligned}
$$

Maximum Likelihood Estimator

Find θ that maximizes the likelihood of the data

$$
\begin{aligned}
& \quad \sum x_{i} \text { heads } \\
& n-\sum x_{i} \text { tails } \\
& L\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}}
\end{aligned}
$$

Maximum Likelihood Estimator

- Observations: M_{H} heads and M_{T} tails
- Find θ maximizing likelihood
- Equivalent to maximizing log-likelihood
- $L L\left(\theta: M_{H}, M_{T}\right)=M_{H} \log \theta+M_{T} \log (1-\theta)$
- Differentiating the log-likelihood and solving for θ :

$$
\hat{\theta}=\frac{M_{H}}{M_{H}+M_{\tau}}
$$

Sufficient Statistics

For computing θ in the coin toss example, we only needed M_{H} and M_{T} since

$$
L(\theta: D)=\theta^{M_{H}}(1-\theta)^{M_{T}}
$$

M_{H} and M_{T} are sufficient statistics

A statistic $t=T(X)$ is sufficient for underlying parameter θ precisely if the conditional probability distribution of the data X, given the statistic $t=T(X)$, does not depend on the parameter θ.

$$
T(D)=T\left(D^{\prime}\right) \Rightarrow L(\theta ; D)=L\left(\theta ; D^{\prime}\right)
$$

Factorization Theorem:
T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$
f_{\theta}(x)=h(x) g_{\theta}(T(x))
$$

Sufficient Statistics

Multinomial distribution

For a dataset D over variable X with k values, the sufficient statistics are counts $\left\langle M_{1}, \ldots, M_{k}\right\rangle$ where M_{i} is the \# of times that $X[m]=x^{i}$ in D

$$
L(\theta: D)=\prod_{i=1}^{k} \theta^{M_{i}}
$$

Gaussian distribution: $f(X) \sim N\left(\mu, \sigma^{2}\right)$ if $f(X)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$
Rewrite as

$$
f(X)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-x^{2} \frac{1}{2 \sigma^{2}}+x \frac{\mu}{-\sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}\right)
$$

Sufficient statistics for Gaussian: $\sum x^{2}, \sum x, \mathrm{n}$

Maximum Likelihood Estimation

Maximum Likelihood Estimation

- MLE Principle: Choose θ to maximize $L(D: \Theta)$
- Multinomial MLE: $\widehat{\theta_{i}}=\frac{M_{i}}{\sum_{j} M_{j}}$

$$
\hat{\mu}=\frac{1}{M} \sum_{m} x[m]
$$

- Gaussian MLE:

$$
\hat{\sigma}=\sqrt{\frac{1}{M} \sum_{m}(x[m]-\hat{\mu})^{2}}
$$

Maximum Likelihood Estimation: Summary

- Maximum likelihood estimation is a simple principle for parameter selection given D
- Likelihood function uniquely determined by sufficient statistics that summarize D
- MLE has closed form solution for many parametric distributions

MLE for Bayes Nets

Parameters

$$
\begin{aligned}
& \theta_{x^{0}}, \theta_{x^{1}} \\
& \theta_{y^{0} \mid x^{0}}, \theta_{y^{1} \mid x^{0}}, \theta_{y^{0} \mid x^{1},} \theta_{y^{0} \mid x^{1}}
\end{aligned}
$$

	\boldsymbol{Y}	
\boldsymbol{X}	y^{0}	y^{1}
x^{0}	0.95	0.05
x^{1}	0.2	0.8

$$
\left(x^{1}, y^{1}\right), \ldots\left(x^{m}, y^{m}\right)
$$

MLE for Bayesian Networks

$$
\begin{gathered}
\left\{\theta_{x}: x \in \operatorname{Val}(X)\right\} \\
\left\{\theta_{y \mid x}: x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y)\right\}
\end{gathered}
$$

$$
\begin{array}{rc}
L(\Theta ; D) & =\prod_{m=1}^{M} P(x[m], y[m]: \theta) \\
& =\prod_{m=1}^{M} P(x[m]: \theta) P(y[m] \mid x[m]: \theta) \\
& \prod_{m=1}^{M} P(x[m]: \theta) \prod_{m=1}^{M} P(y[m] \mid x[m]: \theta)
\end{array}
$$

MLE for Bayesian Networks

$$
\begin{gathered}
L(\Theta: D) \quad=\prod_{m} P(x[m]: \Theta) \\
=\prod_{m}^{m} P\left(x_{i}[m] \mid \boldsymbol{U}_{i}[m]: \Theta_{i}\right) \\
=\prod_{i} \prod_{m} P\left(x_{i}[m] \mid \boldsymbol{U}_{i}[m]: \Theta_{i}\right) \\
=\prod_{i} L_{i}\left(D: \Theta_{i}\right)
\end{gathered}
$$

if $\theta_{X_{i} \mid U_{i}}$ are disjoint, then MLE can be computed by maximizing each local likelihood separately
For table CPDs, further decomposition

MLE limitations

- Two teams play 10 times, and the first wins 7 of the 10 matches \Rightarrow Probability of first team winning $=0.7$
- A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses \Rightarrow Probability of heads $=0.7$
- A coin is tossed 10000 times, and comes out 'heads' 7000 of the 10000 tosses
\Rightarrow Probability of heads $=0.7$
- Before the first game, you cannot have an opinion on which team will win

Bayesian Inference

- Given a fixed θ, tosses are independent
- If θ is unknown, tosses are not marginally independent each toss tells us something about θ

Bayesian Inference

- Given a fixed θ, tosses are independent
- If θ is unknown, tosses are not marginally independent each toss tells us something about θ

Bayesian Inference for Multinomial

Dirichlet distribution

$f\left(\theta_{1}, \ldots, \theta_{k} \mid \alpha_{1}, \ldots, a_{k}\right)=\left\{\begin{array}{c}\frac{1}{B(\alpha)} \prod_{i=1}^{K} \theta_{i}^{a_{i}-1}, \theta_{i} \in[0,1] \\ 0, \quad \text { otherwise }\end{array}\right.$
where $B(\alpha)=\frac{\prod_{i=1}^{K} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\alpha_{0}\right)}, \alpha_{0}=\sum_{i=1}^{K} \alpha_{i}$

Bayesian Inference for Multinomial

$$
\begin{aligned}
& P(D \mid \theta)=\prod_{i=1}^{k} \theta_{i}^{M_{i}} \\
& P(\theta) \propto \prod_{i=1}^{k} \theta_{i}^{a_{i}}
\end{aligned}
$$

Update only uses sufficient statistics
$P(D \mid \theta) P(\theta) \propto \prod_{i=1}^{k} \theta_{i}^{a_{i}+M_{i}}$

Bayesian Estimation for BNs

- Instances are independent given the parameters ($\mathrm{X}\left[\mathrm{m}^{\prime}\right], \mathrm{Y}[\mathrm{m} ']$) are d-separated from (X [m], $Y[\mathrm{~m}]$) given θ
- Parameters for individual variables are independent a priori $P(\theta)=\Pi P\left(\theta_{X_{i}} \mid P_{a}\left(X_{i}\right)\right)$
- Posteriors for θ are also independent given the data:
- $P\left(\theta_{x}, \theta_{Y \mid X} \mid D\right)=P\left(\theta_{x} \mid D\right) P\left(\theta_{Y \mid X} \mid D\right)$

As in MLE, we can solve each estimation problem separately

Bayesian Estimation for BNs

- Instances are independent given the parameters ($\mathrm{X}\left[\mathrm{m}^{\prime}\right], \mathrm{Y}[\mathrm{m} ']$) are d-separated from ($\mathrm{X}[\mathrm{m}], Y[\mathrm{~m}]$) given θ
- Parameters for individual variables are independent a priori $P(\theta)=\Pi P\left(\theta_{X_{i}} \mid P_{a}\left(X_{i}\right)\right)$
- Posteriors for θ are also independent given the data:
- $P\left(\theta_{x}, \theta_{Y \mid X} \mid D\right)=P\left(\theta_{x} \mid D\right) P\left(\theta_{Y \mid X} \mid D\right)$

As in MLE, we can solve each estimation problem separately

- Posteriors of θ can be computed independently
- For multinomial $\theta_{X \mid u}$ if prior is $\operatorname{Dirichlet}\left(a_{x^{1} \mid u}, \ldots, a_{x^{k} \mid u}\right)$
- posterior is Dirichlet $\left(a_{x^{1} \mid \boldsymbol{u}}+M\left[x^{1}, \boldsymbol{u}\right], \ldots, a_{x^{k} \mid \boldsymbol{u}}+M\left[x^{k}, \boldsymbol{u}\right]\right)$

Equivalent Sample size

- We need hyperparameter $\alpha_{x \mid u}$ for each node X, value x, and parent assignment \boldsymbol{u}
- Prior network with parameters Θ_{o}
- Equivalent sample size parameter a
$-\alpha_{x \mid \boldsymbol{u}}=\alpha P\left(x, \boldsymbol{u} \mid \Theta_{0}\right)$

Case Study

- ICU-Alarm network
- 37 variables
- 504 params
- Experiment

- Sample instances from network
- Relearn parameters

Case Study: ICU Alarm Network

Daphne Koller

Summary

- In Bayesian networks, if parameters are independent a priori, then also independent in the posterior
- For multinomial BNs, estimation uses sufficient statistics $M[x, u]$

$$
\begin{array}{cc}
\hat{\theta}_{x \mid u}=\frac{M[x, \boldsymbol{u}]}{M[\boldsymbol{u}]} & E(x \mid \boldsymbol{u}, D)=\frac{\alpha_{x, u}+M[x, \boldsymbol{u}]}{\alpha_{u}+M[\boldsymbol{u}]} \\
\text { MLE } & \text { Bayesian (Dirichlet) }
\end{array}
$$

- Bayesian methods require choice of prior
- can be elicited as prior network and equivalent sample size

