Probabilistic Graphical Models

Metropolis-Hastings

Learning Parameters

Summary: Gibbs Sampling

- Converts the hard problem of inference to a sequence of "easy" sampling steps
- Pros:
 - Probably the simplest Markov chain for PGMs
 - Computationally efficient to sample
- Cons:
 - Only applies if we can sample from product of factors
 - Often slow to mix, esp. when probabilities are very high
 - How can you move away from the current space?

Reversible Chains

Detailed Balance Equation:

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π

Reversible Chains

Detailed Balance Equation:

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π

$$\pi(x^1)T(x^1\to x^3)=\pi(x^3)T(x^3\to x^1)$$

Metropolis Hastings Chain

Proposal distribution $Q(x \rightarrow x')$

Acceptance probability: $A(x \rightarrow x')$

- At each state x, sample x' from $Q(x \rightarrow x')$
- Accept proposal with probability $A(x \rightarrow x')$

- If proposal accepted, move to x'

– Otherwise stay at x

$$T(x \to x') = Q(x \to x')A(x \to x'), \text{ if } x \neq x'$$
$$T(x \to x) = Q(x \to x) + \sum_{x \neq x'} Q(x \to x')[1 - A(x \to x')]$$

Daphne Koller

Construct A such that detailed balance holds

$$\pi(\mathbf{x})T(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')T(\mathbf{x}' \to \mathbf{x})$$
$$\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')A(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})A(\mathbf{x}' \to \mathbf{x})$$
$$\frac{A(\mathbf{x} \to \mathbf{x}')}{A(\mathbf{x}' \to \mathbf{x})} = \frac{\pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')}$$

Construct A such that detailed balance holds

$$\pi(\mathbf{x})T(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')T(\mathbf{x}' \to \mathbf{x})$$

$$\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')A(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})A(\mathbf{x}' \to \mathbf{x})$$

$$\stackrel{A(x \to x') = \rho}{A(x' \to x)} = \frac{A(\mathbf{x} \to \mathbf{x}')}{A(\mathbf{x}' \to \mathbf{x})} = \frac{\pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')}$$

$$A(\mathbf{x} \to \mathbf{x}') = \min\left[1, \frac{\pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')}\right]$$

Proposal Distiribution

$$A(\mathbf{x} \to \mathbf{x}') = \min\left[1, \frac{\pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')}\right]$$

• Q must be reversible:

 $-Q(x \to x') > 0 \Rightarrow Q(x' \to x) > 0$

- Opposing forces
 - Q should try to spread out, to improve mixing
 - But then acceptance probability often low

Theorem

Let *Q* be a proposal distribution, and *consider the Markov chain defined by equations (12.25)*

$$T(x \to x') = Q(x \to x')A(x \to x'), if x \neq x'$$

$$T(x \to x) = Q(x \to x) + \sum_{x \neq x'} Q(x \to x') [1 - A(x \to x')]$$

With $A(x \to x') = \min\left[1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')}\right]$

If this Markov chain is regular, then it has the stationary distribution π

Example: Acceptance Probability

If Q = T, but you want to sample from a different stationary distribution $\pi'(x^1) = 0.6, \pi'(x^2) = 0.3, \pi'(x^3) = 0.1$

Find the Acceptance Probability

$$\pi(x^{1})T(x^{1} \to x^{2}) = \pi(x^{2})T(x^{2} \to x^{1})$$

$$\pi(x^{2})T(x^{2} \to x^{3}) = \pi(x^{3})T(x^{3} \to x^{2})$$

$$\pi(x^{3})T(x^{1} \to x^{3}) = \pi(x^{1})T(x^{3} \to x^{1})$$

Relationship to Gibbs Sampling

Gibbs Sampling is a special case of MH

• The GS proposal distribution is

$$Q(x'_i, \mathbf{x}_{-i} \mid x_i, \mathbf{x}_{-i}) = P(x'_i \mid \mathbf{x}_{-i})$$

 $(\mathbf{x}_{-i} \text{ denotes all variables except } \mathbf{x}_i)$

• Applying Metropolis-Hastings with this proposal, we obtain:

$$A(x'_{i}, \mathbf{x}_{-i} | x_{i}, \mathbf{x}_{-i}) = \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} | x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} | x_{i}, \mathbf{x}_{-i})}\right)$$

= $\min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} | \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} | \mathbf{x}_{-i})}\right) = \min\left(1, \frac{P(x'_{i} | \mathbf{x}_{-i})P(\mathbf{x}_{-i} | \mathbf{x}_{-i})}{P(x_{i} | \mathbf{x}_{-i})P(\mathbf{x}_{-i} | \mathbf{x}_{-i})}\right)$
= $\min(1, 1) = 1$

GS is simply MH with a proposal that is always accepted!

Summary

- MH is a general framework for building Markov chains with a particular stationary distribution
 - Requires a proposal distribution
 - Acceptance computed via detailed balance
- Tremendous flexibility in designing proposal distributions that explore the space quickly
 - But proposal distribution makes a big difference
 - and finding a good one is not always easy

Gibbs Sampler is a special case of MH

MCMC for Matching

X_i = j if (matched to)

$$P(X_1 = v_1, \dots, X_4 = v_4) \propto \begin{bmatrix} \exp(-\sum_i \operatorname{dist}(i) \psi_i) & \mathbf{i} \\ 0 \end{bmatrix}$$

if every X_i has different value otherwise

Daphne Koller

MH for Matching: AugmentingPath

- 1) randomly pick one variable X_i
- 2) sample X_i, pretending that all values are available
- 3)pick the variable whose assignment was taken (conflict), and return to step 2
- When step 2 creates no conflict, modify assignment to flip augmenting path

Daphne Koller

Example Results

Inference is about computing marginal and conditional distributions on a network

Exact Inference: Variable Elimination, Belief Propagation

Approximate Inference: Loopy Belief Propagation, Sampling-Based Inference (Forward Sampling, Importance Weighting, MCMC-Gibbs Sampling/MH sampling)

Approaches to learning parameters

Frequentist approach

Parameters are numbers, I will try to identify the most likely number given my data.

Bayesian Approach

Parameters are numbers, but I have uncertainty about them, so I will treat them like random variables, that have distributions.

Plate Models

Plate models can represent repetition

Plate Models

Plate models can represent repetition

Nested Plate Models

Difficulty is a property of the course Intelligence is a property of the course and the student

Overlapping Plate Models

Difficulty is a property of the course Intelligence is a property of the course and the student

Why?

Collective Inference

Formal definition

A plate model $\mathcal{M}_{\text{plate}}$ defines, for each template attribute $A \in \aleph$ with argument signature U_1, \dots, U_k :

• a set of template parents

$$\operatorname{Pa}_{A} = \{B_{1}(\boldsymbol{U}_{1}), \dots, B_{l}(\boldsymbol{U}_{l})\}$$

such that for each $B_i(U_i)$, we have that $U_i \subseteq \{U_1, \dots, U_k\}$. The variables U_i are the argument signature of the parent B_i .

• a template CPD $P(A | Pa_A)$.

Back to Learning: iid as plate models

$$P(x[m] \mid \theta) = \begin{cases} \theta & x[m] = x^{1} \\ 1 - \theta & x[m] = x^{0} \end{cases}$$

Maximum Likelihood Estimator

Find θ that maximizes the likelihood of the data

$$\sum_{i=1}^{n} x_{i} \text{ heads}$$

$$n - \sum_{i=1}^{n} x_{i} \text{ tails}$$

$$L(x_{1}, \dots, x_{n}; \theta) = \theta^{\sum_{i=1}^{n} (1-\theta)^{n-\sum_{i=1}^{n} x_{i}}} \qquad \textcircled{9}_{i=1}^{0} \underbrace{0}_{0,2,0,4,0,6,0,8,1} \quad \theta$$

Maximum Likelihood Estimator

- Observations: M_H heads and M_T tails
- Find θ maximizing likelihood
- Equivalent to maximizing log-likelihood
- $LL(\theta: M_H, M_T) = M_H \log \theta + M_T \log(1 \theta)$
- Differentiating the log-likelihood and solving for θ :

$$\hat{\theta} = \frac{M_H}{M_H + M_\tau}$$

Sufficient Statistics

For computing θ in the coin toss example, we only needed M_H and M_T since $L(\theta; D) = \theta^{M_H} (1 - \theta)^{M_T}$

 M_H and M_T are sufficient statistics

A statistic t = T(X) is sufficient for underlying parameter θ precisely if the conditional probability distribution of the data *X*, given the statistic t = T(X), does not depend on the parameter θ .

$$T(D) = T(D') \Rightarrow L(\theta; D) = L(\theta; D')$$

Factorization Theorem:

T is sufficient for θ if and only if nonnegative functions *g* and *h* can be found such that

 $f_{\theta}(x) = h(x)g_{\theta}(T(x))$

Sufficient Statistics

Multinomial distribution

For a dataset *D* over variable *X* with *k* values, the sufficient statistics are counts $\langle M_1, ..., M_k \rangle$ where M_i is the # of times that $X[m] = x^i$ in *D*

$$L(\theta:D) = \prod_{i=1}^{k} \theta^{M_i}$$

Gaussian distribution: $f(X) \sim N(\mu, \sigma^2)$ if $f(X) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ Rewrite as

$$f(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-x^2 \frac{1}{2\sigma^2} + x \frac{\mu}{-\sigma^2} - \frac{\mu^2}{2\sigma^2}\right)$$

Sufficient statistics for Gaussian: $\sum x^2$, $\sum x$, n

Maximum Likelihood Estimation

Maximum Likelihood Estimation

• MLE Principle: Choose θ to maximize $L(D: \Theta)$

• Multinomial MLE:
$$\widehat{\theta}_i = \frac{M_i}{\sum_j M_j}$$

$$\hat{\mu} = \frac{1}{M} \sum_{m} x[m]$$
$$\hat{\sigma} = \sqrt{\frac{1}{M} \sum_{m} (x[m] - \hat{\mu})^2}$$

• Gaussian MLE:

Maximum Likelihood Estimation: Summary

- Maximum likelihood estimation is a simple principle for parameter selection given *D*
- Likelihood function uniquely determined by sufficient statistics that summarize *D*

- MLE has closed form solution for many parametric distributions

MLE for Bayes Nets

Parameters

$$\begin{aligned} \theta_{x^0}, \theta_{x^1}, \\ \theta_{y^0|x^0}, \theta_{y^1|x^0}, \theta_{y^0|x^1}, \theta_{y^0|x^1} \end{aligned}$$

Data

$$(x^1, y^1), \dots (x^m, y^m)$$

	Y	
X	y ⁰	y1
x ⁰	0.95	0.05
x ¹	0.2	0.8

MLE for Bayesian Networks

 $\{\theta_x : x \in \operatorname{Val}(X)\}\$ $\{\theta_{y|x} : x \in \operatorname{Val}(X), y \in \operatorname{Val}(Y)\}\$

$$L(\Theta; D) = \prod_{m=1}^{M} P(x[m], y[m]; \theta)$$
$$= \prod_{m=1}^{M} P(x[m]; \theta) P(y[m] \mid x[m]; \theta)$$
$$\prod_{m=1}^{M} P(x[m]; \theta) \prod_{m=1}^{M} P(y[m] \mid x[m]; \theta)$$

MLE for Bayesian Networks

$$L(\Theta; D) = \prod_{m} P(x[m]; \Theta)$$
$$= \prod_{m} P(x_{i}[m] | \boldsymbol{U}_{i}[m]; \Theta_{i})$$
$$= \prod_{i} \prod_{m} P(x_{i}[m] | \boldsymbol{U}_{i}[m]; \Theta_{i})$$
$$= \prod_{i} L_{i}(D; \Theta_{i})$$

if $\theta_{X_i|\cup_i}$ are disjoint, then MLE can be computed by maximizing each local likelihood separately

For table CPDs, further decomposition

- Two teams play 10 times, and the first wins 7 of the 10 matches ⇒ Probability of first team winning = 0.7
- A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses
 ⇒ Probability of heads = 0.7
- A coin is tossed 10000 times, and comes out 'heads' 7000 of the 10000 tosses
 - \Rightarrow Probability of heads = 0.7
- Before the first game, you cannot have an opinion on which team will win

Bayesian Inference

- Given a fixed θ , tosses are independent
- If θ is unknown, tosses are not marginally independent
 each toss tells us something about θ

Bayesian Inference

- Given a fixed θ , tosses are independent
- If θ is unknown, tosses are not marginally independent
 each toss tells us something about θ

$$P(\mathbf{x}[1], \dots, \mathbf{x}[m], \theta) =$$

$$P(\mathbf{x}[1], \dots, \mathbf{x}[m], |\theta) P(\theta) =$$

$$x_1$$

$$x_2$$

$$\dots$$

$$x_m$$

 θ

Bayesian Inference for Multinomial

Dirichlet distribution

$$f(\theta_{1}, \dots, \theta_{k} \mid \alpha_{1}, \dots, \alpha_{k}) = \begin{cases} \frac{1}{B(\alpha)} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}, \theta_{i} \in [0,1] \\ 0, & otherwise \end{cases}$$

where $B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_{i})}{\Gamma(\alpha_{0})}, \alpha_{0} = \sum_{i=1}^{K} \alpha_{i}$

Bayesian Inference for Multinomial

 $P(D \mid \theta) = \prod_{i=1}^{k} \theta_i^{M_i}$ $P(\theta) \propto \prod_{i=1}^{k} \theta_i^{a_i}$

 $P(D|\theta)P(\theta) \propto \prod_{i=1}^{k} \theta_i^{a_i+M_i}$

Update only uses sufficient statistics

Bayesian Estimation for BNs

- Instances are independent given the parameters -(X[m'],Y[m']) are d-separated from (X [m], Y[m]) given θ
- Parameters for individual variables are independent a priori $P(\theta) = \prod P(\theta_{X_i} | P_a(X_i))$
- Posteriors for θ are also independent given the data:
- $P(\theta_x, \theta_{Y|X}|D) = P(\theta_x|D)P(\theta_{Y|X}|D)$

As in MLE, we can solve each estimation problem separately

Bayesian Estimation for BNs

- Instances are independent given the parameters -(X[m'],Y[m']) are d-separated from (X [m], Y[m]) given θ
- Parameters for individual variables are independent a priori $P(\theta) = \prod P(\theta_{X_i} | P_a(X_i))$
- Posteriors for θ are also independent given the data:
- $P(\theta_x, \theta_{Y|X}|D) = P(\theta_x|D)P(\theta_{Y|X}|D)$ As in MLE, we can solve each estimation problem separately
 - Posteriors of θ can be computed independently
 - For multinomial $\theta_{X|u}$ if prior is Dirichlet $(a_{x^1|u}, \dots, a_{x^k|u})$

- posterior is Dirichlet($a_{x^1|u} + M[x^1, u], \dots, a_{x^k|u} + M[x^k, u]$)

Equivalent Sample size

- We need hyperparameter $\alpha_{x|u}$ for each node X, value x, and parent assignment u
 - Prior network with parameters Θ_o
 - Equivalent sample size parameter *a*

$$-\alpha_{x|\boldsymbol{u}} = \alpha P(x, \boldsymbol{u}|\Theta_0)$$

- Sample instances from network
- Relearn parameters

Daphne Koller

Daphne Koller

Summary

- In Bayesian networks, if parameters are independent a priori, then also independent in the posterior
- For multinomial BNs, estimation uses sufficient statistics M[x, u]

$$\widehat{\theta}_{x|u} = \frac{M[x, u]}{M[u]} \qquad E(x|u, D) = \frac{\alpha_{x,u} + M[x, u]}{\alpha_u + M[u]}$$
MLE Bayesian (Dirichlet)

- Bayesian methods require choice of prior
 - can be elicited as prior network and equivalent sample size