Probabilistic Graphical Models

Metropolis-Hastings

Learning Parameters



Summary: Gibbs Sampling

* Converts the hard problem of inference to a
sequence of “easy” sampling steps

* Pros:
— Probably the simplest Markov chain for PGMs
— Computationally efficient to sample

* Cons:
— Only applies if we can sample from product of factors
— Often slow to mix, esp. when probabilities are very high
— How can you move away from the current space?



Reversible Chains
Detailed Balance Equation:
T(x)T(x » x') =n(x")T(x" - x)

Definition: A Markov Chain is reversible if it satisfies the detailed
balance equation for a unique distribution
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Metropolis Hastings Chain
Proposal distribution Q(x —» x’)

Acceptance probability: A(x - x’)
* At each state x, sample x’ from Q(x —» x’)

» Accept proposal with probability A(x - x")
—If proposal accepted, move to x’
— Otherwise stay at x

T(x->x")=0Q0(x-> xX)A(x - X),if x #x'

T(x->x)=0Q(x—-x)+ Z Q(x » xH[1 —A(x —» x)]

x+x'



Acceptance Probabillity

Construct A such that detailed balance holds

(X)) T(x > x')=n(x)T(x" - x)
T(x)Q(x - x)A(x - x') =n(x")Q(x" - x)A(x" - x)
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Proposal Distiribution

r(x)Q(x" - x)
"(x)Q(x - x')

A(x - x') = min|1

* Q must be reversible:
—Qx->x")>0=2>0Q0(x'>x)>0

 Opposing forces
— Q should try to spread out, to improve mixing
— But then acceptance probability often low



Theorem

Let Q be a proposal distribution, and consider the Markov
chain defined by equations (12.25)
T(x->x")=0Q0(x- xX)A(x - X),if x #x'

T(x—->x)=Q(x—-x)+ Z Q(x » xH[1 —A(x - x)]

xzx'

With A(x - x') = min [1, 20220

(x)Q(x—x")

If this Markov chain is reqular, then it has the stationary
distribution m



Example: Acceptance Probability

If Q = T, but you want to sample from a different stationary
distribution 7' (x1) = 0.6, 7' (x?) = 0.3, ' (x3) = 0.1

Find the Acceptance Probability

Yy ‘ m(z') = 0.2 m(xDT(x! - x%) = m(x*)T(x* - x)
5 75€D\ 0.3 m(z2) = 0.5 T(x?)T(x? - x3) = w(x3)T(x3 - x?)
‘ 3y — 03 T(x)HT(x! - x3) = n(xHT (x> - x)



Relationship to Gibbs Sampling

Gibbs Sampling is a special case of MH
e The GS proposal distribution is
Qxi,x_i | x;,%x_;) = P(x; | x_;)
(x_; denotes all variables except x;)
e Applying Metropolis-Hastings with this proposal, we obtain:
P(x;, x_)Q(x, x_; | x{»x—i)>

,P(xi;x—i)Q(X{,X—i | x5, X_;

A(x{,x_; | x;,X_;) = min (1

. P(x;,x_)P(x; | X—i)) . < P(x{ | x_)P(x_;))P(x; | X—i))
= min | 1, in| 1,
( P(x;, x_)P(x} 1 x_;) P(x; | x_))P(x_)P(x] | x_;)
= min(1,1) =1

GS is simply MH with a proposal that is always accepted!



Summary

* MH is a general framework for building Markov chains with a
particular stationary distribution
— Requires a proposal distribution
— Acceptance computed via detailed balance

 Tremendous flexibility in designing proposal distributions that
explore the space quickly
— But proposal distribution makes a big difference
— and finding a good one is not always easy

Gibbs Sampler is a special case of MH



MCMC for Matching

X; = j if @matched to@

different value

llexp( Z dist(2)0))) if every X has

otherwise

Daphne Koller



MH for Matching: AugmentingPath

1) randomly pick one variable X;
2) sample X;, pretending that all values are available

3)pick the variable whose assignment was taken
(conflict), and return to step 2

 When step 2 creates no conflict, modify assignment to flip
augmenting path



Example Results
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Summary: Inference

Inference is about computing marginal and conditional
distributions on a network

Exact Inference: Variable Elimination, Belief Propagation

Approximate Inference: Loopy Belief Propagation,
Sampling-Based Inference (Forward Sampling, Importance
Weighting, MCMC-Gibbs Sampling/MH sampling)



Approaches to learning parameters

Frequentist approach

Parameters are numbers, | will try to identify the most likely
number given my data.

Bayesian Approach

Parameters are numbers, but | have uncertainty about them,
so | will treat them like random variables, that have
distributions.



Plate Models

Plate models can represent repetition

Toss outcome




Plate Models

Plate models can represent repetition

Intelligence

Intelligence Intelligence Intelligence
(s1) (s2) (sn)




Nested Plate Models

Difficulty is a property of the course
Intelligence is a property of the course and the student

Intelligence

Grade >




Overlapping Plate Models

Difficulty is a property of the course
Intelligence is a property of the course and the student

Intelligence

C omee

Difficulty
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Collective Inference
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Formal definition

A plate model M plate defines, for each template attribute A € X with
argument signature Uy, ..., Uy :

e a set of template parents
Pay, = {B1(U1), ..., B(U})}

such that for each B;(U;), we have that U; < {U,, ..., U, }. The variables U; are
the argument signature of the parent B;.

e atemplate CPD P(A | Pay).



Back to Learning: iid as plate models

o P(x[m] | 6)
8 x[m]=x"

S

S




Maximum Likelihood Estimator

Find 8 that maximizes the likelihood of the data

z x; heads
n— z x; tails

L(xl, ...,xn; 8) — Hle(l . Q)n_zxi

\

O 02 04 06 08 1 9

L(D:6)




Maximum Likelihood Estimator

e Observations: My heads and M, tails
e Find # maximizing likelihood
e Equivalent to maximizing log-likelihood

® LL(Q MH' MT) — MHlOg 0 + MTlOg(l — 0)
e Differentiating the log-likelihood and solving for 6:

My

0 =
My + M,




Sufficient Statistics

For computing 6 in the coin toss example, we only needed My and M since
L(0:D) = 6Mu(1 — o)Mr

My and My are sufficient statistics

A statistic t = T'(X) is sufficient for underlying parameter 6 precisely if the
conditional probability distribution of the data X, given the statistic t = T'(X),
does not depend on the parameter 6.

T(D) = T(D’) = L(6;D) = L(6;D")

Factorization Theorem:

T is sufficient for 6 if and only if nonnegative functions g and h can be found such that

fo(x) = h(x)ge (T (x))



Sufficient Statistics

Multinomial distribution

For a dataset D over variable X with k values, the sufficient statistics are
counts (M, ..., M;,) where M; is the # of times that X[m] = x*in D

L(6:D) =[], 6M:

Gaussian distribution: f(X) ~ N(u,02)if f(X) = - e_%(x?Tu)

\V2TTo
Rewrite as
1 1 uooop
X) = —x%—+ —
J(X) \/27wexp< X 202 x—az 202>

Sufficient statistics for Gaussian: Y'x?, Y'x, n



Maximum Likelihood Estimation

Maximum Likelihood Estimation

e MLE Principle: Choose 6 to maximize L(D: ©)

L 2) M;
e Multinomial MLE: 8; = > M
Jj
1
— MZm x[m]

fi
e Gaussian MLE: \/
5 =



Maximum Likelihood Estimation: Summary

-  Maximum likelihood estimation is a simple principle for parameter
selection given D

- Likelihood function uniquely determined by sufficient statistics
that summarize D

- MLE has closed form solution for many parametric distributions



MLE for Bayes Nets

X
Parameters T
X X
0.7 0.3
HXO’ Hxl, 0,0, 0,1
HyleO, lelxo, Hyolxl, Hy()lxl
0y°|x°'Hyllxo'gyolxllgyolxl
Y
X y’ y'
Data n
X 0.95 0.05
1 1 m .,m
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MLE for Bayesian Networks

{60,:x € Val(X)}
{01 x € Val(X),y € Val(Y)}

L(6; D) - ]_[ P(x[m], y[m]: 6)

1_[ P(x[m]: 0)P(y[m] | x[m]: 0)




MLE for Bayesian Networks

L(O:D) = 1_[ P(x|m]: ©)
- ﬁ P(xi[m] | Uylm]: ©;) &
=| || | peutmi1 vitmy: 00 <>

if Oy, are disjoint, then MLE can be computed by maximizing
each local likelihood separately

For table CPDs, further decomposition



MLE limitations

Two teams play 10 times, and the first wins 7 of the 10 matches
= Probability of first team winning = 0.7

A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses
= Probability of heads = 0.7

A coin is tossed 10000 times, and comes out 'heads' 7000 of the
10000 tosses
= Probability of heads = 0.7

Before the first game, you cannot have an opinion on which team
will win



Bayesian Inference

e Given a fixed 60, tosses are independent

e If 0 is unknown, tosses are not
marginally independent

each toss tells us something about 6



Bayesian Inference

e Given a fixed 6, tosses are independent

e If 0 is unknown, tosses are not
marginally independent

each toss tells us something about 6

P(x|[1],...,x[m],0) =
P(x[1],...,x[m], |6)P(O) =

P©) | | Petie)



Bayesian Inference for Multinomial
Dirichlet distribution

(
a;— .
f(elr "')Hk I a4, .- ak) = < B(a) Hl 19 01 € [0,1]
.0 otherwise
K )
where B(a) = i;(lcf ()al) 00 = Ni=1 @ -~
: 9.0

7.5 ‘a.
6.0 &
5
45 &
3.0

0.0

Bayesian Inference for Multinomial

P(D|0) = k 19Mi Update only o
a; 11 48 ! 12.5

P(6) « 1%, 9 i uses sgffluent oy
statistics

o o
o ™

P(D|0)P(8) o« [T, oM

% _o*




Bayesian Estimation for BNs

Instances are independent given the parameters -
(X[m'],Y[m']) are d-separated from (X [m], Y[ m]) given 6

Parameters for individual variables are independent a
priori P(6) = [1P (6x,|P.(X))

Posteriors for 8 are also independent given the data:

P(6y,6y(x|D) = P(6xID)P(6y(x|D)
As in MLE, we can solve each estimation problem separately




Bayesian Estimation for BNs

Instances are independent given the parameters -
(X[m'],Y[m']) are d-separated from (X [m], Y[ m]) given 6

Parameters for individual variables are independent a
priori P(6) = [1P (6x,|P.(X))

Posteriors for 8 are also independent given the data:
P(6y,6y(x|D) = P(6xID)P(6y(x|D)

As in MLE, we can solve each estimation problem separately
e Posteriors of 8 can be computed independently
— For multinomial Oy, if prior is Dirichlet(a,1,, ..., @k,

— posterior is Dirichlet(a,, + M[xt,uj, ..., Aok +M[x*, u])



Equivalent Sample size

- We need hyperparameter a,,, for each node X, value x, and

parent assignment u

— Prior network with parameters 0,

— Equivalent sample size parameter a

— Gy = aP(x,|0)



Case Study <p
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Case Study: ICU Alarm Network
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Summary

* |n Bayesian networks, if parameters are independent a priori,
then also independent in the posterior

* For multinomial BNs, estimation uses sufficient statistics M |x, u]

Oxlu = E(xlu D) =—
T M(u] (xfw. D) a, + Mu]
MLE Bayesian (Dirichlet)

e Bayesian methods require choice of prior
— can be elicited as prior network and equivalent sample size



