Last time

e Compare proportion p to null value p,
o Statistic: Z-score: Z = p;}f"

o Underthenull, Z ~ N(0,1)
e Compare two proportions py, P,
e Null value p; —p, =0
7 — P1=P2 —P1+P2
SE¢1—P2

e Statistic: Z-score:



Practice

A drone company is considering a new manufacturer for
rotor blades. The new manufacturer would be more
expensive, but they claim their higher-quality blades are
more reliable, with more than 3% more blades passing

inspection than their competitor. Set up appropriate
hypotheses for the test.



Practice

e |dentify the research question

e Identify a quantity related to the research question whose value we don't
know ('parameter’).
e \Writing the statistical hypotheses in terms of that parameter of interest.

e Collect data and calculate a statistic

e Find the distribution of the statistic under the null hypothesis

e Find the p-value (probability that the result we got or a more extreme one
happens just by chance given that the null hypothesis is true).

e Decide if the p-value is small or large

® Reject if p-value is lower than the significance threshold a.



Practice

e |dentify the research question (C2 blades are better than C1

blades)

e Identify a quantity related to the research question whose value we don't
know (‘parameter’). p, — p;
e \Writing the statistical hypotheses in terms of that parameter of interest.
Ho: p, —»,=0.03 and H; p, —p; > 0.03.
.p2—P1—(P2—p1) _ P2~-P1-0.03

e Collect data and calculate a statistic (Z-score: )
SEpy—p1 SEp,—pq

e Find the distribution of the statistic under the null hypothesis N(0,1)

e Find the p-value (probability that the result we got or a more extreme one
happens just by chance given that the null hypothesis is true).

e Decide if the p-value is small or large

® Reject if p-value is lower than the significance threshold a.



Practice

The quality control engineer collects a sample of blades,
examining 1000 blades from each company, and she finds that
899 blades pass inspection from the current (C1) supplier and
958 pass inspection from the prospective (C2) supplier.

Find the p-value
Should we change suppliers?



Chi-Square test of GOF



Fisher’s exact test

® Ronald Fisher offered lady Muriel Bristol, a cup of tea.

® She declined after watching Fisher prepare it, saying

that she preferred the taste when the milk was poured
in the cup first.

® Fisher and others scoffed at this and a colleague,
William Roach, suggested a test.



Fisher’s exact test

® Ronald Fisher offered lady Muriel Bristol, a cup of tea.

® She declined after watching Fisher prepare it, saying
that she preferred the taste when the milk was poured
in the cup first.

® Fisher and others scoffed at this and a colleague,
William Roach, suggested a test.

® 4 cups with milk poured first, 4 cups with milk poured
after.

® Otherwise the cups were the same (temperature,
appearance etc).



Fisher’s exact test

e The lady is offered the tea, and for every cup

she guesses:
o Milk first (MF) or Tea first (TF)

Guess
MF TF Total
MF 4 0 4
TF 0 4 4
Total 4 4

Prep

Contingency table



Fisher’s exact test

e The lady is offered the tea, and for every cup

she guesses:
o Milk first (MF) or Tea first (TF)

Once you fix one of the values, all the rest are fixed Guess
because the marginals are fixed

MF TF Total

MF 4 0 4
Prep
TF 0 4 4
Total 4 4

Contingency table



Fisher’s exact test

e The lady is offered the tea, and for every cup

she guesses:
o Milk first (MF) or Tea first (TF)

+  Hy: The lady has no ability of distinguishing the Guess
method of preparation (the woman selects MF TF  Total
randomly). MF 4 0 4

» x: The number of MF she got right. Prep TE 0 p

» P-value: The probability of observing data at Total 2 2

least as extreme (unfavorable to H,) under
the null hypothesis.

Contingency table



Fisher’s exact test

e The lady is offered the tea, and for every cup

she guesses:
o Milk first (MF) or Tea first (TF)

+  Hy: The lady has no ability of distinguishing the Guess
method of preparation (the woman selects MF TF  Total
randomly). MF 4 0 4
 x: The number of MF she got right. Prep TF 0 4 4
P-value: The probability of observing data at
least as extreme (unfavorable to H,) under

the null hypothesis. Contingency table

Total 4 4

* P(X = x|Hy) P(X = alHy)



Fisher’s exact test

Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a
population of 4 MF and TF cups
X: number of MF cups
X ~ Hypergeometric(N,K,n)
* N is the population size
« Kis the number of success states in the population

* nis the number of draws G
(KY(N-K uess
P(X=x) ==% (I’J) = MF TF  Total
n
MF 4 0 4
Prep
TF 0 4 4
Total 4 4

Contingency table

P(X = 4|Hy)



Fisher’s exact test

Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a
population of 4 MF and TF cups
X: number of MF cups
X ~ Hypergeometric(N,K,n)
* N is the population size
« Kis the number of success states in the population

* nis the number of draws G
(KY(N-K uess
P(X=x) ==% (I’J) = MF TF  Total
n
MF 4 0 4
Prep
TF 0 4 4
Total 4 4

Contingency table

P(X = 4|H,) = 71—0 =0.014



Fisher’s exact test

Under the null hypothesis, the lady picks 4 cups at random, without replacement, from a
population of 4 MF and TF cups
X: number of MF cups
X ~ Hypergeometric(N,K,n)
* N is the population size
« Kis the number of success states in the population

* nis the number of draws G
(KY(N-K uess
P(X=x) ==% (I’J) = MF TF  Total
n
MF 3 1 4
Prep
TF 1 3 4
Total 4

Contingency table

P(X = 3|Hy) + P(X = 4|H,) = %+ % =0.242



Weldon's dice

e Walter Frank Raphael Weldon (1860 -
1906), was an English evolutionary biologist
and a founder of biometry. He was the joint
founding editor of Biometrika, with Francis
Galton and Karl Pearson.

e |In 1894, he rolled 12 dice 26,306 times, and
recorded the number of 5s or 6s (which he
considered to be a success).

e |t was observed that 5s or 6s occurred more often than
expected, and Pearson hypothesized that this was probably due
to the construction of the dice. Most inexpensive dice have
hollowed-out pips, and since opposite sides add to 7, the face
with 6 pips is lighter than its opposing face, which has only 1

PIP.



Labby's dice

e [n 2009, Zacariah Labby (U of Chicago),
repeated Weldon's experiment using a
homemade dice-throwing, pip counting

machine.
www.youtube.com/watch?v=95EErdouQ2w

e The rolling-imaging process took about 20
seconds per roll.

Each day there were ~150 images to process manually.
e At this rate Weldon's experiment was repeated in a little more

than six full days.


http://www.youtube.com/watch?v=95EErdouO2w

Labby's dice (cont.)

e Labby did not actually observe the same phenomenon
that Weldon observed (higher frequency of 5s and 6s).

e Automation allowed Labby to collect more data than
Weldon did in 1894, instead of recording "successes" and
"failures"”, Labby recorded the individual number of pips
on each die.

.......................

Overall Probability

0.160 0162 0.164 0.166 0168 010 0.172 0.174



Expected counts

Labby rolled 12 dice 26,306 times. If each side is equally
likely to come up, how many 1s, 2s, ..., 6s would he expect to
have observed?

(a)1/6

(b)12/6

(c) 26,306 / 6
(d)12 x 26,306 / 6



Expected counts

Labby rolled 12 dice 26,306 times. If each side is equally
likely to come up, how many 1s, 2s, ..., 6s would he expect to
have observed?

(a)1/6
(b)12/6

(c) 26,306 / 6

(d) 12 x 26,306/ 6 = 52,612



Summarizing Labby's results

The table below shows the observed and expected counts

from Labby's experiment.

Outcome | Observed Expected

1 53,222 52,612

2 52,118 52,612

3 52,465 52,612

4 52,338 52,612

5 52,244 52,612

6 53,285 52,612
Total 315672 315672

Why are the expected counts the same for all outcomes but
the observed counts are different? At a first glance, does
there appear to be an inconsistency between the observed

and expected counts?



Setting the hypotheses

Do these data provide convincing evidence of an inconsistency
between the observed and expected counts?

H,: There is no inconsistency between the observed and the
expected counts. [he observed counts follow the same distribution
as the expected counts.

H,: There is an inconsistency between the observed and the
expected counts. [he observed counts do not follow the same
distribution as the expected counts. There is a bias in which side
comes up on the roll of a die.



Evaluating the hypotheses

e To evaluate these hypotheses, we quantify how different
the observed counts are from the expected counts.

e Large deviations from what would be expected based on
sampling variation (chance) alone provide strong
evidence for the alternative hypothesis.

e This is called a goodness of fit test since we're evaluating
how well the observed data fit the expected distribution.



Anatomy of a test statistic

The general form of a test statistic is

point estimate — null value
SE of point estimate

This construction is based on

1. identifying the difference between a point estimate and an
expected value if the null hypothesis was true, and

2. standardizing that difference using the standard error of the point
estimate.

These two ideas will help in the construction of an appropriate test
statistic for count data.



Chi-square statistic

When dealing with counts and investigating how far the
observed counts are from the expected counts, we use a new

test statistic called the chi-square (x?) statistic.

X2 statistic

k
O - E)?
X = Z ( ) where k = total number of cells
=



Calculating the chi-square statistic

Outcome | Observed Expected %

1 53,222 52,612 | (3221”77

2 52,118 52,612 | CRLESZ6I2Y _ 464

3 52,465 52,612 | CZASSZOAN _ 4

4 52,338 52,612 | C2IEILOID _ 4 43

5 52,244 52,612 | CRAUSZOLY _ ) 57

6 53,285 52,612 | G3ZIOLY _ g6
Total | 315672 315,672 24.73




Why square?

Squaring the difference between the observed and the
expected outcome does two things:

e Any standardized difference that is squared will now be
positive.

e Differences that already looked unusual will become
much larger after being squared.



The chi-square distribution

e In order to determine if the x2 statistic we calculated is considered
unusually high or not we need to first describe its distribution.

(Ni—np;)?
XZ = 5(:1 np?
Under the null, when n — o0, X? ~ x* with k-1
degrees of freedom.

e The chi-square distribution has just one parameter called degrees of

freedom (df), which influences the shape, center, and spread of the
distribution.



y¥* distributions

Which of the following is false?

Degrees of Freedom
— D
- -4
-9




Finding areas under the chi-square
curve

e p-value = tail area under the chi-square distribution (as
usual)



Finding areas under the chi-square
curve

e p-value = tail area under the chi-square distribution (as
usual)

e For this we can use technology, or a chi-square
probability table.



Finding areas under the chi-square
curve

Estimate the shaded area under the chi-square curve
with df = 6.



Finding areas under the chi-square
curve

Estimate the shaded area under the chi-square curve
with df = 6.

> pchisg(qg = 10, df = 6, lower.tail = FALSE)
[1] 0.124652



Finding areas under the chi-square
curve

Estimate the shaded area under the chi-square curve with df = 6.

df

I
(o)}

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001

d 1] 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83
241 3.22 4.61 5.99 7.82 9.21 10.60 13.82
3.66 4.64 6.25 7.81 9.84 1134 1284 16.27
4.88 5.99 T 949 | 11.67 1328 14.86 18.47
6.06 7.29 924 11.07 | 13.39 15.09 16.75 20.52

723 856 10.64 1259 | 15.03 16.81 18.55 22.46
8.38 9.80 12.02 14.07 | 16.62 18.48 20.28 24.32

N OO A ON




Finding areas under the chi-square
curve (cont.)

Estimate the shaded area under the chi-square curve with df = 6.

df

I
(o)}

0 10

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
d 1| 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83

2 | 241 3.22 4.61 5.99 7.82 921 10.60 13.82

3 | 3.66 4.64 6.25 7.81 984 1134 1284 16.27

4 | 488 5.99 7.78 949 | 11.67 1328 1486 1847

5| 606 7.29 924 11.07 | 13.39 15.09 16.75 20.52

7 | 838 980 12.02 14.07 | 16.62 18.48 20.28 24.32




Finding areas under the chi-square
curve (cont.)

Estimate the shaded area under the chi-square curve with df = 6.

df

I
(o))

0 10

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001

d 1] 1.07 1.64 2.71 3.84 5.41 6.63 7.88 10.83
241 3.22 4.61 5189 7.82 921 1060 13.82
3.66 4.64 6.25 7.81 984 1134 1284 16.27
488 5.99 7.78 949 | 11.67 1328 14.86 18.47
6.06 7.29 924 11.07 | 13.39 15.09 16.75 20.52

7 (838 9.80 1202 14.07 | 16.62 18.48 20.28 24.32

a H WO N




Finding areas under the chi-square
curve (cont.)

Estimate the shaded area under the chi-square curve with df = 6.

P(%_¢ > 10)

f is between 0.1 and 0.2

I
(o)}

Upper talil
df 1




Finding areas under the chi-square
curve (cont.)

Estimate the shaded area (above 17) under the x? curve with df = 9.

a) between 0.01 and 0.02

(
df=9 (
- (c) between 0.02 and 0.05
(d)0.05
0 17 (e) between 0.05 and 0.10
Upper talil 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 7 8.38 9.80 12.02 14.07 | 16.62 18.48 20.28 24.32
8 952 11.03 13.36 15.51 18.17 20.09 21.95 26.12
9 | 1066 1224 1468 1692 | 19.68 21.67 2359 27.88
10 | 11.78 13.44 1599 18.31 21.16  23.21 25.19 29.59
11 1290 1463 1728 19.68 | 22.62 24.72 26.76 31.26




Finding areas under the chi-square
curve (cont.)

Estimate the shaded area (above 17) under the x? curve with df = 9.

df=9

0 s
Upper tail 0.3 0.2 0.1
df 7 8.38 9.80 12.02
8 952 11.03 13.36

9] 1066 1224 1468

10 | 11.78 13.44 15.99
11 | 1290 14.63 17.28

(a) between 0.01 and 0.02
(b)0.02
(c) between 0.02 and 0.05
(d)0.05
(e) between 0.05 and 0.10

0.01 0.005 0.001

18.48 2028 24.32
20.09 2195 26.12

23.21 25.19 29.59

24.72 26.76 31.26




Finding areas under the chi-square
curve (one more)

Estimate the shaded area (above 30) under the x? curve with df = 10.

(a) between 0.005 and 0.001
(b) less than 0.001
df =10 (c) greater than 0.001
(d) greater than 0.3
0 30 (e) cannot tell using this table

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001

df 7 8.38 9.80 12.02 14.07 | 16.62 1848 20.28 24.32
8 952 11.03 1336 1551 | 1817 20.09 2195 26.12
9 | 1066 1224 1468 16.92 | 19.68 21.67 23.59 27.88
10 | 11.78 1344 1599 1831 | 21.16 2321 25.19 29.59
11 | 1290 1463 1728 19.68 | 22.62 24.72 26.76 31.26




Finding areas under the chi-square
curve (one more)

Estimate the shaded area (above 30) under the x? curve with df = 10.

(a) greater than 0.3
(b) between 0.005 and 0.001

df =10 (c) less than 0.001
(d) greater than 0.001
: e) cannot tell using this table
5 o (e) g
Upper tall 0.3 0.2 0.1 0.05 0.02 0.01  0.005
of 7| 838 980 1202 14.07 | 16.62 18.48 20.28
8 952 11.08 1336 15.51

9 | 1066 1224

14.68

16.92




Back to Labby's dice

e The research question was: Do these data provide convincing
evidence of an inconsistency between the observed and expected
counts?

e The hypotheses were:

H,: There is no inconsistency between the observed and the
expected counts. The observed counts follow the same distribution
as the expected counts.

H,: There is an inconsistency between the observed and the
expected counts. The observed counts follow the same
distribution as the expected counts. There is a bias in which side
comes up on the roll of a die.

e \We had calculated a test statistic of

e All we need is the df and we can calculate the tail area (the p-
value) and make a decision on the hypotheses.



Degrees of freedom for a goodness
of fit test

e When conducting a goodness of fit test to evaluate how well the
observed data follow an expected distribution, the degrees of
freedom are calculated as the number of cells (k) minus 1.

df =k -1



Degrees of freedom for a goodness
of fit test

e When conducting a goodness of fit test to evaluate how well the
observed data follow an expected distribution, the degrees of
freedom are calculated as the number of cells (k) minus 1.

df =k -1

e For our experiment, k = 6, therefore

df=6-1=5



Finding a p-value for
a chi-square test

The p-value for a chi-square test is defined as the tail area above
the calculated test statistic.

p-value = P(x7,_s > 24.67)
is less than 0.001




Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At 5% significance
level, what is the conclusion of the hypothesis test?

(a)Reject H,, the data provide convincing evidence that the
dice are fair.

(b)Reject H,, the data provide convincing evidence that the
dice are biased.

(c) Fail to reject H,, the data provide convincing evidence
that the dice are fair.

(d)Fail to reject H,, the data provide convincing evidence
that the dice are biased.



Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At 5% significance
level, what is the conclusion of the hypothesis test?

(a)Reject H,, the data provide convincing evidence that the
dice are fair.

(c) Fail to reject H,, the data provide convincing evidence
that the dice are fair.

(d)Fail to reject H,, the data provide convincing evidence
that the dice are biased.



Turns out...

e The 1-6 axis is consistently shorter than the other two (2-5 and 3-4),
thereby supporting the hypothesis that the faces with one and six pips
are larger than the other faces.

e Pearson's claim that 5s and 6s appear more often due to the carved-
out pips is not supported by these data.

e Dice used in casinos have flush faces, where the pips are filled in with
a plastic of the same density as the surrounding material and are
precisely balanced.

L
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The y“ test

Assume that you have a large population of items of k different types,
and let p; denote the probability of an item selected at random will be of
typei=1,..,k

Let p?, ..., pp be numbers such thatp? >0 Y p? =1

We want to test the hypothesis:
O Hy: pi=plVivs
O  H;:p; # p? for at least one i

Assume we have a data set of n observations, and N; is the number of
observations of type i.

The expected number of observations of type i under the null
hypothesis is np;
(Ni—np?)?

np?

Under the null, when n — o, X? ~ x? with k-1 degrees of freedom.

Define the statistic X2 =YX,



Recap: p-value for a chi-square test

e The p-value for a chi-square test is defined as the tail area
above the calculated test statistic.

e This is because the test statistic is always positive, and a higher

test statistic means a stronger deviation from the null
hypothesis.

p-value




Conditions for the chi-square test

1. Independence: Each case that contributes a count to the
table must be independent of all the other cases in the
table.

2. Sample size: Each particular scenario (i.e. cell) must have
at least 5 cases.

3. df = 1. Degrees of freedom must be greater than 1.

Failing to check conditions may unintentionally affect the
test's error rates.



2009 Iran Election

There was lots of talk of election fraud in the 2009 Iran election. We'll
compare the data from a poll conducted before the election (observed data)
to the reported votes in the election to see if the two follow the same
distribution.

Observed # of Reported % of

Candidate voters in poll  votes in election
(1) Ahmedinajad 338 63.29%
(2) Mousavi 136 34.10%
(3) Minor candidates 30 2.61%

Total 504 100%




2009 Iran Election

There was lots of talk of election fraud in the 2009 Iran election. We'll
compare the data from a poll conducted before the election (observed data)
to the reported votes in the election to see if the two follow the same
distribution.

Observed # of Reported % of

Candidate voters in poll  votes in election
(1) Ahmedinajad 338 63.29%
(2) Mousavi 136 34.10%
(3) Minor candidates 30 2.61%
Total 504 100%
d l

observed expected

distribution




Hypotheses

What are the hypotheses for testing if the distributions of
reported and polled votes are different?

H,: The observed counts from the poll follow the same
distribution as the reported votes.

H ,: The observed counts from the poll do not follow the same
distribution as the reported votes.



Calculation of the test statistic

Observed # of Reported % of Expected # of
Candidate voters in poll  votes in election votes in poll
(1) Ahmedinajad 338 63.29% 504 x 0.6329 =319
(2) Mousavi 136 34.10% 504 x0.3410 =172
(3) Minor candidates 30 2.61% 504 x 0.0261 =13
Total 504 100% 504
(01 - E1)*  (338-319%* i 15
E; B 319 -
0, — E»)? 136 — 172)?
(02 — Ep)” _ ( > 7 53
E> 172
0, — E;)* (30— 13)?
(02 — Ep)” _ ( > 2293
E> I3

Xjf=3-1=2 = 30.89



Calculation of the test statistic

Uppertall | 03 0.2 01 005 | 002 0.01 0.005 0.001

dft 11107 164 271 384 | 541 663 788 10.83
2241 322 461 599 | 782 921 1060 13.82
3 |366 464 625 781 | 984 1134 1284 16.27

Xof=3-1=2 = 30.89




Conclusion

Based on these calculations what is the conclusion of the
hypothesis test?

(a) p-value is low, H, is rejected. The observed counts from the poll
do not follow the same distribution as the reported votes.

(b) p-value is high, H, is not rejected. The observed counts from
the poll follow the same distribution as the reported votes.

(c) p-value is low, H, is rejected. The observed counts from the poll
follow the same distribution as the reported votes

(d) p-value is low, H, is not rejected. The observed counts from the
poll do not follow the same distribution as the reported votes.



Conclusion

Based on these calculations what is the conclusion of the
hypothesis test?

(b) p-value is high, H, is not rejected. The observed counts from
the poll follow the same distribution as the reported votes.

(c) p-value is low, H, is rejected. The observed counts from the poll
follow the same distribution as the reported votes

(d) p-value is low, H, is not rejected. The observed counts from the
poll do not follow the same distribution as the reported votes.
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Example: Independence

* You have a population of 520
people
* 160/520 smoke.
« 210/520 have CVD.

Smoking

CVvD
Y N
120 40
90 270
Total 210 310

Contingency table

Total
160
360
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Example: Independence

Null Hypothesis (H,) : Smoking is independent of CVD
Alternative Hypothesis (H,) : Smoking is dependent of CVD

Mathematically:

Hy =V i,j pij =i XD, Poo Po1 | Po.
Hy =31i,j: pij # piXp; P10 P11 | Pu
D.o D1 1
p;=P(X =i Y=}
pi. =PX =1)
Reminder: Independence: p,;=P(Y =)

Vx,yPY=y,X=x)=P(Y =y)PX=x)



Statistical Dependence

CVD
Y N Total
120 40 160
90 270 360
Total 210 310

Contingency table

Smoking

CVD
Y N Total
2308 | .0769 | .3077
A731 | 5192 | .6923

Total .4038 .5962

Joint Probability Distribution
P(CVD,Smoking)

Smoking

CVD
Y N Total
_ 75 25 1
Smoking
25 75 1
Conditional Probability Distribution
P(CVD|Smoking)
CVD
Y N
5714 | 1290
Smoking
4286 | .8710
Total 1 1

Conditional Probability Distribution
P(Smoking|CVD)
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Statistical Dependence

CVD
Y N Total
_ Y 120 40 160 _
Smoking Smoking
N 90 270 360
Total 210 310
Contingency table
CVD
Y N P(Smoking)
_ 2308 | .0769 _
Smoking Smoking
A731 | 5192

Total .4038 .5962

Joint Probability Distribution
P(CVD,Smoking)

P(Smoking)#P(Smoking|CVD=yes)

CVD
Y N Total
Y 75 25 1
N 25 75 1

Conditional Probability Distribution
P(CVD|Smoking)

Total

Conditional Probability Distribution
P(Smoking|CVD)
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Test statistic: Expected counts

CVD CVD
Y N  Total Y N  Total
Y |.2308|.0769|.3077 Y 3077
Smoking Smoking
N |.1731].5192|.6923 N .6923
Total .4038 .5962 Total .4038 .5962
in your data If Smoking and CVD

were independent?
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Are Smoking and CVD independent?

Smoking

CVD

Y N
Y |.2308/|.0769
N [.1731].5192
Total .4038 .5962

in your data

Total
3077
.6923

Smoking

Y

CVD
Y N

/

N

otal

/

4038 .5962

Total
3077
.6923

If Smoking and CVD
were independent?

P(Smoking = Yes,CVD = Yes) = P(Smoking = Yes) * P(CVD = Yes)
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Are Smoking and CVD independent?

Smoking

CVD

Y N
Y |.2308/|.0769
N [.1731].5192
Total .4038 .5962

in your data

Total
3077
.6923

Smoking

Y

CVD
Y N

/

N

otal

/

4038 .5962

Total
3077
.6923

If Smoking and CVD
were independent?

P(Smoking = Yes,CVD = Yes) = P(Smoking = Yes) * P(CVD = Yes) = 0.4038 = 0.3077
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Are Smoking and CVD independent?

CVvD
Y N
Y |.2308.0769
Smoking
N [.1731].5192
Total .4038 .5962

in your sample

Total
3077
.6923

Smoking

CVD

Y

N

Y |.1242

1835

N |[.2796

4127

Total .4038

0962

Total
3077
.6923

If Smoking and CVD
were independent?
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Are Smoking and CVD independent?

Smoking

CVvD
Y N
Y 120 40
N 90 270

counts in your data

Smoking

CvD
Y N
}5 95
7
145 | 215

Exgefcted counts If Smoking and CVD

were independent

P(Smoking = Yes,CVD = Yes) x # samples = .1242*520




" n;;: Counts in your data (# observations in cell i,j)
" e;j: Expected counts under H,

2
Y2 _ Z (ni; —eij)
i €ij

What is the probability of observing a value t at least as
extreme as the one you observed in your data?

1 P(X? > x2ps|Ho)

df are the degrees of freedom, i.e. the number of parameters that are free to vary
For testing X1 Y

df = (# possible values of X — 1)x
(# of possible values of Y — 1)
df =2-1)x2-1)=1



