
Probabilistic Graphical Models

Monte Carlo Sampling



Example: Estimate p for a Bernoulli distribution P
Toss a coin m times, compute  !𝑝 = 𝐸 𝑋 = !

"
∑𝑋#

Sampling-Based (Monte Carlo) Estimation

Daphne Koller

Theoretical expectation: p = 𝐸 𝑋 = ∑! 𝑥𝑃 𝑥

Empirical Expectation: 𝑝̂ = *𝐸 𝑋 ≈ "
#
∑𝑋$

Estimator is unbiased 

𝐸 𝑝̂ = 𝑝

Asymptotics: 𝑝̂ → 𝑝, 𝑝̂ ∼ 𝑁𝑜𝑟𝑚(𝑝, %
!

&
)



Idea: Distribution 𝑃, you want to compute E[𝑓 𝑿 ]

Exact/Approximate Inference is very hard

Sample 𝐷 = 𝒙 1 ,… , 𝒙 𝑀 (i.i.d)

For a distribution P, function f:
Estimate 3𝐸$[𝑓(𝑋)] =

!
"
∑𝑓(𝑥 𝑚 )

Sampling-Based (Monte Carlo) Estimation

Daphne Koller



Properties

Estimator is unbiased: E[ 8𝑓] = 𝐸[3𝐸% 𝑓 𝑋 ] = 𝐸$[𝑓 𝑋 ]

Variance of the estimator: 𝜎 &'
( = 𝜎'(/𝑛

Weak Law of Large Numbers:
lim)→+ 𝑃 ?|𝑓 − 𝐸, 𝑓 𝑋 < 𝜖 = 1

CLT: 8𝑓 ∼ 𝑁(𝐸$ 𝑓 𝑋 , 𝜎 &'
()



How do we sample?

-Computers can produce random numbers from a uniform 
distribution.

-Inverse CDF transform-based sampling
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Let 𝑈$ = F(x'). Then𝑈$ ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)



How do we sample?

Let 𝑈$ = F(x'). Then 𝑈$∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)

𝑥

Claim: If 𝑈 is a uniform random variable on [0,1] then 𝐹!"(𝑈) has 𝐹 as its 
CDF.
Proof:

𝑃 𝑋$ ≤ 𝑥
= 𝑃 𝐹!(" 𝑢$ ≤ 𝑥 = 𝐹(𝑥)

Pr 𝐹!"(𝑈) ≤ 𝑥
= Pr(𝑈 ≤ 𝐹(𝑥))

= 𝐹(𝑥) (because Pr(𝑈 ≤ 𝑢) = 𝑢, when U is uniform on [0,1])

Let 𝐹 be a strictly monotonic cumulative distribution 
function, and let 𝐹!" be its inverse function



How do we sample?

Let 𝑈$ = F(x'). Then 𝑈$∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)

𝑥

1. Generate a random number 𝑢 from the standard uniform distribution 

in the interval [0,1], i.e. from 𝑈 ∼ Unif[0,1].

2. Find the generalized inverse of the desired CDF, i.e. 𝐹123(𝑢).

3. Compute 𝑋4(𝑢) = 𝐹123(𝑢). The computed random variable 𝑋4(𝑈) has 

distribution 𝐹1 and thereby the same law as 𝑋.



Example: Exponential Distribution

• Draw some 𝑢5 from a 𝑈 ∼ Unif 0,1

• Compute 𝑥5 = 𝐹123 𝑢6 = − 3
7
ln 1 − 𝑢5

• This 𝑥5 has exponential distribution.

How about 𝐹 𝑥 = 1 − 𝑒𝑥𝑝(− 𝑥)



IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Forward sampling from a BN

Daphne Koller



Idea: Distribution 𝑃, you want to compute 𝑃 𝑿 = 𝒙 = 𝑬[𝐼 𝑿 = 𝒙 ]

Exact/Approximate Inference is very hard

Sample 𝐷 = 𝒙 1 ,… , 𝒙 𝑀 (i.i.d)

Estimate H𝑃 𝑿 = 𝒙 = !
"
∑𝐼(𝑿 = 𝒙)

Sampling-Based (Monte Carlo) Estimation

Daphne Koller



Sampling-Based (Monte Carlo) Estimation

Hoeffding Bound:

For additive bound 𝜖 on error with probability > 1-𝛿:

Chernoff Bound:

For multiplicative bound 𝜖 on error with probability > 1-δ:

Daphne Koller



Forward Sampling for Querying

• Goal: Estimate P(Y=y)
– Generate samples from BN
– Compute fraction where Y=y

For additive bound 𝜖 on error with probability > 1-𝛿

For multiplicative bound 𝜖 on error with probability > 1-𝛿

Daphne Koller



Queries with Evidence

• Goal: Estimate P(Y=y | E=e)
• Rejection sampling algorithm
–Generate samples from BN
– Throw away all those where E≠e
–Compute fraction where Y=y

Expected fraction of samples kept ~ P(e)
# samples needed rows exponentially  with # of observed
variables

Daphne Koller



Likelihood Weighting Sampling

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Example: Force 𝑠"

𝑃 𝑠" 𝑖) = 0.05
𝑃 𝑠" 𝑖" = 0.8

Example: Force 𝑠", 𝑙), 
sample d", i), 𝑔*

𝑃 𝑙) 𝑔* = 0.4
𝑃 𝑠" 𝑖) = 0.05



Likelihood Weighting Sampling

5𝑃= 𝒚 ∣ 𝒆 =
∑>?3@ 𝑤 𝑚 1 𝒚 𝑚 = 𝒚

∑>?3@ 𝑤 𝑚



General Framework: Rejection Sampling

• Access to easy-to-sample distribution Q(𝑥)
• Constant 𝑘 such that 𝑃(x) ≤ 𝑘𝑄(𝑥)

• Algorithm
1. Sample from Q(𝑥)

2. Keep samples in proportion to ! (#)
%⋅'(()

and reject the rest



General Framework: Rejection Sampling

• Access to easy-to-sample distribution Q(𝑥)
• Constant 𝑘 such that P(x) ≤ 𝑘𝑄(𝑥)

• Algorithm
1. Sample xA ∼ Q(x)
2. Sample  𝑦5 ∼ 𝑈𝑛𝑖[0, 𝑘𝑄 𝑥5 ]
3. If P 𝑥5 ≤ 𝑦5 keep, otherwise reject.



General Framework: Rejection Sampling

• Access to easy-to-sample distribution Q(𝑥)
• Constant 𝑘 such that F𝑃(x) ≤ 𝑘𝑄(𝑥)

• Algorithm
1. Sample xA ∼ Q(x)
2. Sample  𝑦5 ∼ 𝑈𝑛𝑖[0, 𝑘𝑄 𝑥5 ]
3. If F𝑃 𝑥5 ≤ 𝑦5 keep, otherwise reject.

Example Uses Gaussian proposal 𝑞 to 
draw samples from multimodal 
distribution 𝑝



General Framework: Rejection Sampling

• Access to easy-to-sample distribution Q(𝑥)
• Constant 𝑘 such that F𝑃(x) ≤ 𝑘𝑄(𝑥)

• Algorithm
1. Sample xA ∼ Q(x)
2. Sample  𝑦5 ∼ 𝑈𝑛𝑖[0, 𝑘𝑄 𝑥5 ]
3. If F𝑃 𝑥5 ≤ 𝑦5 keep, otherwise reject.

Example Uses Gaussian proposal 𝑞 to 
draw samples from multimodal 
distribution 𝑝

Can be very wasteful
Needs to be bounded



Importance Sampling (unnormalized)

• Idea: Sample from Q(𝑥)
• Weigh the sample proportionally to  
w x = B C

D(C)

• Access to easy-to-sample distribution 𝑄(𝑥)
• Q(𝑥) > 0 whenever 𝑃(𝑋) > 0
• You want to compute 𝐸[𝑓 𝑋 ]



Importance Sampling (unnormalized)

𝐸$(.) 𝑓 𝑋 = 𝐸0(.) 𝑓 𝑋
𝑃 𝑋
𝑄(𝑋)

≅
1
𝑀
∑12!" 𝑝 𝑥 1

𝑞 𝑥(1)
𝑓 𝑥 1

Where 𝑥. are sampled from 𝑞(𝑥)



Selecting Good Proposals



Selecting Good Proposals



Example:

Sample from a fair die to simulate data from an unfair die

𝐸[𝑋] = 3.5

𝑃(𝑋 = 1) = 1/6

𝐸[𝑋] = 1.9

𝑃(𝑋 = 1) = 4/6



Bias/Variance of the importance sampling 
estimator

For data sets 𝒟 sampled from 𝑄, we have that:

𝔼𝒟 𝔼̂𝒟(𝑓) = 𝑬*(𝑿)[𝑓(𝑿)𝑤(𝑿)] = 𝔼!(𝑿)[𝑓(𝑿)]

We can also estimate the distribution of this estimator around its mean. Letting 𝜖𝒟 =
𝔼̂𝒟(𝑓) − 𝔼![𝑓(𝑥)], we have that, since 𝑀 → ∞ :

𝔼𝒟 𝜖𝒟 ∼ 𝒩 0; 𝜎*,/𝑀

where

𝜎*, = 𝑬*(𝑿) (𝑓(𝑿)𝑤(𝑿)), − 𝔼*(𝑿)[(𝑓(𝑿)𝑤(𝑿))],

= 𝑬*(𝑿) (𝑓(𝑿)𝑤(𝑿)), − 𝔼!(𝑿)[𝑓(𝑿)]
,



Importance Sampling (normalized)

What if you have an unnormalized distribution p?

• Access to easy-to-sample distribution 𝑄(𝑥)
• Q(𝑥) > 0 whenever F𝑃 𝑥 = 𝑍𝑃(𝑋) > 0
• You want to compute 𝐸[𝑓 𝑋 ]



Importance Sampling (normalized)

What if you have an unnormalized distribution p?

• Access to easy-to-sample distribution 𝑄(𝑥)
• Q(𝑥) > 0 whenever F𝑃 𝑥 = 𝑍𝑃(𝑋) > 0
• You want to compute 𝐸[𝑓 𝑋 ]

• 𝐸B 𝑓(𝑋) = 3
E𝐸D

FB 1
D 1 𝑓 𝑋

• 𝑤 𝑥 =
FB 1
D 1

• 𝐸D 𝑤 𝑋 = 𝑍



Bias/Variance of the normalized importance 
sampling estimator

𝔼̂𝒟(𝑓) =
∑$%"& 𝑓(𝒙[𝑚])𝑤(𝒙[𝑚])

∑$%"& 𝑤(𝒙[𝑚])
Not unbiased:

𝔼𝒟 𝔼̂𝒟 𝑓 ≠ 𝔼'(𝑿)[𝑓(𝑿)]

Variance: VarB 𝔼̂𝒟(𝑓(𝑿)) ≈ 3
@VarB[𝑓(𝑿)] 1 + VarD[𝑤(𝑿)]



Summary: Importance Sampling

1. Simulate from tractable distribution

𝑥(-) -./
0 ∼ 𝑄(x)

2. Compute importance weights & normalize

F𝑤(-) =
G𝑃 𝑥(-)

𝑄 𝑥(-)
, w(1) =

F𝑤(-)

∑2./0 𝑟̃(2)

3. Compute importance-weighted expectation

𝐄![𝑓(x)] ≈ P
-./

0

𝑤(-)𝑓 𝑥(-) ≡ 𝑓



Importance Sampling in BNs

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

We want to sample from 
𝑃(𝐷, 𝐼, 𝑆, 𝐿|𝐺 = 𝑔Q)

We want to bias our sampling 
towards parts of the space 
where this event holds

For L, this is easy; Sample from 
𝑃 𝐿 𝐺 = 𝑔Q

For the rest?



Mutilated Network Proposal Distribution

Let ℬ be a network, and 𝑍3 = 𝑧3, … , 𝑍R = 𝑧R, abbreviated 𝓩 = 𝒛, an 
instantiation of variables.

We define the mutilated network ℬ𝒁?𝒛 as follows:
• Each node 𝑍5 ∈ 𝒁 has no parents in ℬ𝒁?𝒛; the CPD of 𝑍5 in ℬE?U gives 

probability 1 to 𝑍5 = 𝑧5 and probability 0 to all other values 𝑧54 ∈ Val 𝑍5 .
• The parents and CPDs of all other nodes 𝑋 ∉ 𝒁 are unchanged.



Mutilated Network Proposal Distribution

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Assume you want to 
sample from 

𝐼 = 𝑖", 𝐺 = 𝑔*



Mutilated Network Proposal Distribution

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0 1

g1 g2 g3

0 1 0

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Assume you want to 
sample from 

𝐼 = 𝑖", 𝐺 = 𝑔*

Mutilated Graph ℬE?U, proposal distribution 𝑃ℬ!"#

Weight of a sample 𝑤(𝜉) = 'ℬ(+)
'ℬ"#$(+)

.
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Summary

• Generating samples from a BN is easy
• (𝜖, 𝛿)-bounds exist, but usefulness is limited:
– Additive bounds: useless for low probability events
– Multiplicative bounds: # samples grows as 1/P(y)

• Forward sampling generally infeasible for MNs

Two ideas for sampling with evidence: 
Throw away samples (rejection sampling)
Weigh samples (Importance sampling)



Summary

Monte Carlo Estimators can compute unbiased 
expectations with good properties

Rejection sampling is straightforward but can be very 
wasteful

Importance sampling can reduce the variance of the 
estimators if you find a good proposal


