Probabilistic Graphical Models

Monte Carlo Sampling



Sampling-Based (Monte Carlo) Estimation

Example: Estimate p for a Bernoulli distribution P
Toss a coin m times, compute p = E|X] = % YX;

Theoretical expectation: p = E[X] = )., xP(x)
Empirical Expectation: p = E[X] ~ % Y X;
Estimator is unbiased

Elpl =p

>

2
Asymptotics: p = p,p ~ Norm(p, %)



Sampling-Based (Monte Carlo) Estimation

Idea: Distribution P, you want to compute E[f (X)]
Exact/Approximate Inference is very hard
Sample D = {x[1], ..., x[M]} (i.i.d)

For a distribution P, function f:
. — 1
Estimate Ep[f (X)] = — Y f(x[m])



Properties

Estimator is unbiased: E[f] = E[E,[f(X)]] = Ep[f (X)]

Variance of the estimator: o7 = of /n

Weak Law of Large Numbers:
lim, o P([f — Ep[f(X)]| <€) =1

CLT: f ~ N(Ep[f ()], 07)



How do we sample?

-Computers can produce random numbers from a uniform
distribution.

-Inverse CDF transform-based sampling
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Let U; = F(X;). ThenU; ~ Uniform(0, 1)



How do we sample?

A
lp===ommmmmmmmmmm = Let F be a strictly monotonic cumulative distribution
function, and let F~! be its inverse function
Fx(x :
fx(x) x (@)

Claim: If U is a uniform random variable on [0,1] then F~1(U) has F as its
CDF.
Proof:

0 >

X Pr(F~1(U) < x)

= Pr(U < F(x))
= F(x) (because Pr(U < u) = u, when U is uniform on [0,1])

Let U; = F(Xx;). Then U;~ Uniform(0,1)
= P(F*(u) < x) = F(x)



How do we sample?

1. Generate a random number u from the standard uniform distribution

in the interval [0,1], i.e. from U ~ Unif[0,1].
2. Find the generalized inverse of the desired CDF, i.e. Fx 1(u).

3. Compute X' (u) = Fyx 1(u). The computed random variable X' (U) has

distribution Fy and thereby the same law as X.

1+F---——--—"—--"—--""—-"-""-"“-""“"“"““"=-—===

Let U; = F(Xx;). Then U;~ Uniform(0,1) /

v



Example: Exponential Distribution

* Draw some u; from a U ~ Unif(0,1)
« Compute x; = Fy 1(ug) = —%ln(l —u;) Il

 This x; has exponential distribution.

How about F(x) = 1 — exp(—/x)




Forward sampling from a BN
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Sampling-Based (Monte Carlo) Estimation

ldea: Distribution P, you want to compute P(X = x) = E[I(X = x)]
Exact/Approximate Inference is very hard

Sample D = {x|1], ..., x[M]} (i.i.d)

Estimate P(X = x) = % YI(X = x)



Sampling-Based (Monte Carlo) Estimation

1
Hoeffding Bound: 2 Tp =37 > Xlml
Pp(Tp & [p—e,p+¢]) < 2e72M¢
For additive bound € on error with probability > 1-9:
A4_>>ln(2/5)
— 2€2

Chernoff Bound:

Pp(Tp ¢ [p(1—€),p(1+¢€)]) < 2e~MPe/3
For multiplicative bound € on error with probability > 1-6:

In(2/9)
pe?

M >3



Forward Sampling for Querying

* Goal: Estimate P(Y=y)
— Generate samples from BN
— Compute fraction where Y=y

In(2/9)
For additive bound € on error with probability > 1-6 M > 9¢2
In(2/0
For multiplicative bound € on error with probability > 1-6 M >3 (2/9)




Queries with Evidence

e Goal: Estimate P(Y=y | E=e)
* Rejection sampling algorithm
— Generate samples from BN

—Throw away all those where E#e
— Compute fraction where Y=y

Expected fraction of samples kept ~ P(e)

# samples needed rows exponentially with # of observed
variables

Daphne Koller



Likelihood Weighting Sampling
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Example: Force st

P(s'|i%) = 0.05
P(stlit) =0.8

Example: Force s, 1°,
sample d!,i°, g*

P(1°|g?%) = 0.4
P(st]i®) = 0.05



Likelihood Weighting Sampling

Algorithm 12.2 Likelihood-weighted particle generation

Procedure 1W-Sample (
B, Il Bayesian network over X
Z =z |l Event in the network

)
1 Let Xq,...,X,, be a topological ordering of A’
2 w+ 1
3 = Lt
4 u; + x(Pax,) /I Assignment to Pax, in z1,...,zi—1
5 if X; € Z then
6 Sample z; from P(X; | u;)
7 else
8 x; < z(X;) /I Assignment to X, in z
9 w4+ w- P(z; |w;) /] Multiply weight by probability of desired value
10 return (z1,...,2,),w

yM_wlm]1{y[m] = y}

2%:1 w[m]

Pp(yle) =



General Framework: Rejection Sampling

e Access to easy-to-sample distribution Q(x)
e Constant k such that P(x) < kQ(x)

e Algorithm
1. Sample from Q(x)
2. Keep samples in proportion to : ézcz)) and reject the rest




General Framework: Rejection Sampling

e Access to easy-to-sample distribution Q(x)
e Constant k such that P(x) < kQ(x)

e Algorithm
1. Sample x; ~ Q(x)
2. Sample y; ~ Uni[0, kQ(x;)]
3. If P(x;) < y; keep, otherwise reject.




General Framework: Rejection Sampling

e Access to easy-to-sample distribution Q(x)
e Constant k such that P(x) < kQ(x)

e Algorithm
1. Sample x; ~ Q(x)
2. Sample y; ~ Uni[0, kQ(x;)]
3. If P(x;) < y; keep, otherwise reject.

Example Uses Gaussian proposal g to

draw samples from multimodal » p(z)
distribution p




General Framework: Rejection Sampling

e Access to easy-to-sample distribution Q(x)

e Constant k such that P(x) < kQ(x)

e Algorithm
1. Sample x; ~ Q(x)
2. Sample y; ~ Uni[0, kQ(x;)]
3. If P(x;) < y; keep, otherwise reject.

Example Uses Gaussian proposal g to
draw samples from multimodal
distribution p

Can be very wasteful
Needs to be bounded

kq(zo) kq(z)




Importance Sampling (unnormalized)

Access to easy-to-sample distribution Q (x)
Q(x) > 0 whenever P(X) > 0
You want to compute E[f (X)]

w(x) =

Idea: Sample from Q(x) p(2) q(z) ﬂz)
Weigh the sample proportionally to
/ \,

Q(x)
-




Importance Sampling (unnormalized)

i PXY
Epxylf (X)] = Eqxy | f (X) =<
1 p x (M) p(2) q(z) ﬂZ)
Ly BT pomy

M q(x(™) f\

Where x,,, are sampled from q(x) / \\
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Bad idea

Bad idea ! '
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Selecting Good Proposals
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Target Distribution Good Proposal Poor Proposal

; ‘ L (£)
Kernel or Parzen window estimators o) = Zw(@ N2, A) o0 o p(x'\?)

Iinterpolate to predict density: — q(z®)




Example:

Sample from a fair die to simulate data from an unfair die

A

i

PX=1) =1/6 P(X=1) =4/6



Bias/Variance of the importance sampling
estimator

For data sets D sampled from Q, we have that:
Ep|Ep ()] = Equolf Xw(X)] = Epxy[f (X)]

We can also estimate the distribution of this estimator around its mean. Letting e, =
Er(f) — Ep[f(x)], we have that, since M — oo :

Eplep] ~ NV(0;05/M)
where
05 = Eoul(fXw(X))?] — Equ[(f X)w(X))]?
= Equ[(F XOWX))?] — (Epon [F(X)])°



Importance Sampling (normalized)

What if you have an unnormalized distribution p?

e Access to easy-to-sample distribution Q(x)
e Q(x) > 0 whenever P(x) = ZP(X) > 0

e You want to compute E[f (X)]
p(2) q(2) ﬁz)

Z




Importance Sampling (normalized)

What if you have an unnormalized distribution p?

e Access to easy-to-sample distribution Q(x)
e Q(x) > 0 whenever P(x) = ZP(X) > 0

e You want to compute E[f (X)]
p(2) q(2) ﬂz)

o Eplf (0] = 3o [5aa f )]

_ P
* W) =55
o Eplw(X)] =2
—

Z




Bias/Variance of the normalized importance
sampling estimator

Ym=1f (x[m])w(x[m])

Z%=1W(x[m])

Ep(f) =

Not unbiased:

Eqp [[ED(f)] #* Epoxy [f (X)]

Variance:  Varp|Bp(f (X))] & -~ Varp[f (X)](1 + Varg[w(X)])



Summary: Importance Sampling

1. Simulate from tractable distribution

(™Y~ e

2. Compute importance weights & normalize

Px(™) o W
Gy’ T T IM F0O

pm) —

3. Compute importance-weighted expectation

M
Eolf ()] ~ ) wmf(xm) = f
m=1
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Importance Sampling in BNs

0.05

0.8

We want to sample from
P(D,I,S,L|G = g*)

We want to bias our sampling
towards parts of the space
where this event holds

For L, this is easy; Sample from
P(LIG = g°)

For the rest?



Mutilated Network Proposal Distribution

Let B be a network, and Z; = z4, ..., Zy = zy, abbreviated Z = z, an
instantiation of variables.

We define the mutilated network B,_, as follows:

e Each node Z; € Z has no parents in B;_,; the CPD of Z; in B,_, gives
probability 1 to Z; = z; and probability o to all other values z; € Val(Z;).

e The parents and CPDs of all other nodes X ¢ Z are unchanged.



Mutilated Network Proposal Distribution

Assume you want to
sample from

i0,dO

i0,d!

it do

il dt




Mutilated Network Proposal Distribution

do
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d1
0.4

Weight of a sample w(¢) =

Mutilated Graph Bz—,, proposal distribution Pg,,__
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I =ilG = g2



Summary

* Generating samples from a BN is easy

* (€,0)-bounds exist, but usefulness is limited:

— Additive bounds: useless for low probability events
— Multiplicative bounds: # samples grows as 1/P(y)

* Forward sampling generally infeasible for MNs

Two ideas for sampling with evidence:
Throw away samples (rejection sampling)
Weigh samples (Importance sampling)



Summary

Monte Carlo Estimators can compute unbiased
expectations with good properties

Rejection sampling is straightforward but can be very
wasteful

Importance sampling can reduce the variance of the
estimators if you find a good proposal



