
Probabilistic Graphical Models

Markov Chain Monte Carlo



Previously

Monte Carlo Sampling

Sample 𝑀 i.i.d. samples from a distribution 𝑃(𝑋 = 𝑥) and estimate expectation of 
function 𝑓(𝑋)

)𝐸![𝑓 𝑋 ] =
1
𝑀
.
"

𝑓(𝑥")

If you cannot sample from 𝑃(𝑋 = 𝑥):

Rejection sampling: Sample 𝑥 from proposal distribution k𝑄 and accept samples 
proportionally to !($)&'($)

Importance sampling: Sample from proposal distribution 𝑄 and weigh sample by 𝑤 𝑥
= !($)

'($)



For BNs

Monte Carlo Sampling

Forward Sampling: Sample 𝑀 i.i.d. samples from a distribution 𝑃(𝑋 = 𝑥) and estimate 
expectation of function 𝑓(𝑋)

)𝐸![𝑓 𝑋 ] =
1
𝑀
.
"

𝑓(𝑥")

If you cannot sample from 𝑃 𝑋 = 𝑥 (e.g., you want to sample from 𝑃 𝑋 = 𝑥|𝐸 = 𝑒

Rejection sampling: Forward sample and accept samples where 𝐸 = 𝑒

Importance sampling: Sample from proposal distribution (mutilated network 𝐵() and 
weigh sample by 𝑤 𝜉

𝑤 𝜉 =
𝑃(𝜉)
𝐵((𝜉)



Importance Sampling for BNs

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0 1

g1 g2 g3

0 1 0

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

When your evidence is 
in the leaves, essentially 
all your sampling is 
done from the prior 
distribution

Idea: Sequence of non-
i.i.d. samples that will 
start from the prior and 
hang out in the 
posterior.

Mutilated Graph ℬ)*+, proposal distribution 𝑃ℬ!"#

Weight of a sample 𝑤(𝜉) = !ℬ(#)
!ℬ"#$(#)

.



Markov Chain

• A Markov chain defines a probabilistic  
transition model 𝑇(𝑥 → 𝑥’) over states x:
– for all 𝑥:
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Daphne Koller



Temporal Dynamics

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.5 -4 0.5 -3 0.5 -2 0.5 -1 0.5 0 0.5 +1 0.5+2 0.5+3 0.5+4

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

-2 -1 0 +1 +2

P(0) 0 0 1 0 0

P(1) 0 .25 .5 .25 0

P(2) .252=
.0625

2´(.5´.25)
= .25

.52+2´.252

= .375
2´(.5´.25)

= .25
.252=
.0625
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Example

𝑃(𝑋 = 𝑥%)

𝑃(𝑋 = 𝑥&)

𝑃(𝑋 = 𝑥%)

𝑃(𝑋 = 𝑥&)

x1                 x2

Start 
at 𝑥%

Start 
at 𝑥&



Stationary Distribution
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Stationary Distribution
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Stationary Distribution
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Properties of Markov Chains

Not all Markov Chains have a unique stationary distribution

Start at 𝑥%: 𝜋 𝑥% = 1

Start at 𝑥': 𝜋 𝑥% = 0

Start at 𝑥&: 𝜋 𝑥% = %
&
, 𝑓𝑜𝑟 𝑛 → ∞

𝑃! 𝑥" = 0, then

P# x" = 0 if 𝑛 even
P# x" = 1 if 𝑛 odd

𝑥&𝑥%: 𝑥' 𝑥(

𝑥&𝑥%

1

Periodic MC: No stationary distribution

Reducible MC: No unique stationary distribution, depends on initial state



Regular Markov Chains

• A Markov chain is regular if there exists 𝑘 such that, for 
every 𝑥, 𝑥’, the probability of  getting from 𝑥 to 𝑥’ in 
exactly 𝑘 steps is > 0

• Theorem: A regular Markov chain converges  to a unique 
stationary distribution regardless of start state
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Regular Markov Chains

Daphne Koller

• A Markov chain is regular if there exists 𝑘 such that, 
for every 𝑥, 𝑥’, the probability of  getting from 𝑥 to 𝑥’ 
in exactly 𝑘 steps is > 0

• Sufficient conditions for regularity:
–Every two states are connected
–For every state, there is a self-transition



Using a Markov Chain

• Goal: compute 𝑃(𝑥 ∈ 𝑆)
–but P is too hard to sample from directly

• Construct a Markov chain T whose unique  stationary 
distribution is P

• Sample 𝑥(") from some 𝑃(")
• For t = 0, 1, 2, …

–Generate 𝑥("#$) from 𝑇(𝑥" → 𝑥&)
Daphne Koller



Using a Markov Chain

• We only want to use samples that are sampled 
from a distribution close to P

• At early iterations, P(t) is usually far from P

• Start collecting samples only after the chain  has run 
long enough to “mix”

Daphne Koller



Mixing

• How do you know if a chain has mixed or not?
–In general, you can never “prove” a chain has mixed
–But in many cases you can show that it has NOT

• How do you know a chain has not mixed?
–Compare chain statistics in different windows  within a 

single run of the chain
–and across different runs initialized differently



iterations iterations
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Initialized from an  
arbitrary state

Initialized from a high-
probability state

Maybe

NO

Mixing?

iterations iterations

Mixing



• Each dot is a statistic (e.g., P(𝑥 ∈ 𝑆))
• x-position is its estimated value from chain 1
• y-position is its estimated value from chain 2

MaybeNOMixing?

Mixing



Using the Samples

• Once the chain mixes, all samples x(t) are  from the stationary 
distribution 𝜋

– So we can (and should) use all 𝑥(1) for 𝑡 > 𝑇𝑚𝑖𝑥
–However, nearby samples are correlated!

–So we shouldn’t overestimate the quality of our  estimate by 
simply counting samples

• The faster a chain mixes, the less  correlated (more useful) 
the samples
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MCMC Algorithm Summary I

• For 𝑐 = 1,… , 𝐶
–Sample 𝑥(") from 𝑃(")

• Repeat until mixing
–For 𝑐 = 1,… , 𝐶
–Generate 𝑥($,&'() from T(𝑥 ',"#$ → 𝑥&)
–Compare window statistics in different chains  to 

determine mixing
– 𝑡 ∶= 𝑡 + 1 Daphne Koller



MCMC Algorithm Summary II

• Repeat until sufficient samples
– 𝐷 ∶= ∅
–For c=1,…,C
–Generate 𝑥($,&'() from T(𝑥 ',"#$ → 𝑥&)
• 𝐷 ∶= 𝐷 ∪ 𝑥(',"#$)

– t := t+1
• Let 𝐷 = {𝑥[1], … , 𝑥[𝑀]}

• Estimate Daphne Koller



Summary

• Pros:
–Very general purpose
–Often easy to implement
–Good theoretical guarantees as 𝑡 → ∞

• Cons:
– Lots of tunable parameters / design choices
–Can be quite slow to converge
–Difficult to tell whether it’s working

Daphne Koller



MCMC for PGMs: Gibbs sampling

• Target distribution 𝑃)(𝑋1, … , 𝑋𝑛)
• Markov chain state space: complete  assignments 
𝒙 to 𝑿 = {𝑋1, … , 𝑋𝑛}

• Transition model given starting state x:
– For i=1,…,n
• Sample 𝑥𝑖 ~𝑃3(𝑋4|𝒙5𝒊) (all except 𝑥))
• Set 𝑥’ = 𝑥

• Example: 𝑋$, 𝑋*, 𝑋+, 𝑋,



MCMC for PGMs: Gibbs sampling

Transition model given starting state x:
– For i=1,…,n
• Sample 𝑥𝑖 ∼ 𝑃3 (𝑋4|𝒙5𝒊) (all except 𝑥))
• Set 𝒙’ = 𝒙

• Example: 𝑋$, 𝑋*, 𝑋+, 𝑋, :
• Start from a random state, e.g. (0,0,0,0)
• Sample x7 ∼ 𝑃(𝑋7|𝑥8 = 0, 𝑥9 = 0, 𝑥: = 0)
• Sample x8 ∼ 𝑃(𝑋8|𝑥7, 𝑥9 = 0, 𝑥: = 0)
• Sample x9 ∼ 𝑃(𝑋9|𝑥7, 𝑥8, 𝑥: = 0)
• Sample x: ∼ 𝑃(𝑋:|𝑥7, 𝑥8, 𝑥9)



Example

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Assume you want to 
sample from 

𝐿 = 𝑙;, 𝑆 = 𝑠7



Example

IntelligenceDifficulty

Grade

Letter

SAT

d0 d1

0.6 0.4
i0 i1

0.7 0.3

g1 g2 g3

i0,d0 0.3 0.4 0.3
i0,d1 0.05 0.25 0.7
i1,d0 0.9 0.08 0.02
i1,d1 0.5 0.3 0.2

l0 l1
g1 0.1 0.9
g2 0.4 0.6
g3 0.99 0.01

s0 s1
i0 0.95 0.05
i1 0.2 0.8

Assume you want to 
sample from 

𝐿 = 𝑙;, 𝑆 = 𝑠7

Step 1: Reduce factors 
according to evidence.

Step 2: Gibbs sampling



Sampling from. 𝑃)(𝑋*|𝒙+𝒊)

For every step of the Gibbs sampler (every step of the 
MCMC), you want to sample from



Another Example

𝑃- 𝐴 = 𝑎 𝑏, 𝑐, d =
./% 0,1,',2

∑&' ./% 4',1,',2
=

= 5((0,1)5)(1,')5*(',2)5+(0,2)
∑&'5( 4

',1 5) 1,' 5*(',2)5+ 4',2
=

=
𝜙>(𝑎, 𝑏)𝜙?(𝑏, 𝑐)𝜙@(𝑐, 𝑑)𝜙A(𝑎, 𝑑)

∑B$𝜙> 𝐴C, 𝑏 𝜙? 𝑏, 𝑐 𝜙@(𝑐, 𝑑)𝜙A 𝐴C, 𝑑



Sampling from. 𝑃)(𝑋*|𝒙+𝒊)

For every step of the Gibbs sampler (every step of the 
MCMC), you want to sample from

Multiply all 

Sum over 𝑥DE

Reminder: Markov Boundary
For every 𝑋4 , 𝑃 𝑋4 𝑉 ∖ 𝑋4 = 𝑃(𝑋4|𝑀𝐵 𝑋4 )

For DAGs: Parents, Children, Spouses
For UGMs: Neighbors



Gibbs Chain and Regularity

• If all factors are positive, Gibbs chain is  regular
• However, mixing can still be very slow

X2X1

Y XOR

X1 X2 Y Prob

0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25
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Summary: Gibbs Sampling

• Converts the hard problem of inference to a  
sequence of “easy” sampling steps

• Pros:
– Probably the simplest Markov chain for PGMs
– Computationally efficient to sample

• Cons:
– Only applies if we can sample from product of factors
– Often slow to mix, esp. when probabilities are very high
– How can you move away from the current space?



Reversible Chains

Detailed Balance Equation:

𝜋 𝑥 𝑇 𝑥 → 𝑥& = 𝜋 𝑥& 𝑇(𝑥& → 𝑥)

Definition: A Markov Chain is reversible if it satisfies the detailed 
balance equation for a unique distribution 𝜋



Reversible Chains

Detailed Balance Equation:

𝜋 𝑥 𝑇 𝑥 → 𝑥& = 𝜋 𝑥& 𝑇(𝑥& → 𝑥)

Definition: A Markov Chain is reversible if it satisfies the detailed 
balance equation for a unique distribution 𝜋

𝜋 𝑥% 𝑇 𝑥% → 𝑥& = 𝜋 𝑥& 𝑇(𝑥& → 𝑥%)
𝜋 𝑥& 𝑇 𝑥& → 𝑥' = 𝜋 𝑥' 𝑇(𝑥' → 𝑥&)
𝜋 𝑥' 𝑇 𝑥% → 𝑥' = 𝜋 𝑥% 𝑇(𝑥' → 𝑥%)



Metropolis Hastings Chain
Proposal distribution 𝑄(𝑥 → 𝑥’)

Acceptance probability: 𝐴(𝑥 → 𝑥’)

• At each state 𝑥, sample 𝑥’ from 𝑄(𝑥 → 𝑥’)

• Accept proposal with probability A(𝑥 → 𝑥’)
– If proposal accepted, move to 𝑥’
–Otherwise stay at 𝑥

𝑇 𝑥 → 𝑥$ = 𝑄 𝑥 → 𝑥’ 𝐴 𝑥 → 𝑥’ , 𝑖𝑓 𝑥 ≠ 𝑥′

Daphne Koller

𝑇 𝑥 → 𝑥 = 𝑄(𝑥 → 𝑥) + @
%&%!

𝑄 𝑥 → 𝑥$ [1 − 𝐴 𝑥 → 𝑥$ ]



Acceptance Probability

Construct A such that detailed balance holds

𝜋(𝒙)𝑇 𝒙 → 𝒙E = 𝜋 𝒙E 𝑇 𝒙E → 𝒙

𝜋 𝒙 𝑄 𝒙 → 𝒙E 𝐴 𝒙 → 𝒙E = 𝜋 𝒙E 𝑄 𝒙E → 𝒙 𝐴 𝒙E → 𝒙

𝐴 𝒙 → 𝒙E

𝐴 𝒙E → 𝒙
=
𝜋 𝒙E 𝑄 𝒙E → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙E



Acceptance Probability

Construct A such that detailed balance holds

𝜋(𝒙)𝑇 𝒙 → 𝒙E = 𝜋 𝒙E 𝑇 𝒙E → 𝒙

𝜋 𝒙 𝑄 𝒙 → 𝒙E 𝐴 𝒙 → 𝒙E = 𝜋 𝒙E 𝑄 𝒙E → 𝒙 𝐴 𝒙E → 𝒙

𝐴 𝒙 → 𝒙E

𝐴 𝒙E → 𝒙
=
𝜋 𝒙E 𝑄 𝒙E → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙E

𝐴 𝑥 → 𝑥) = 𝜌
𝐴 𝑥) → 𝑥 = 1

𝐴 𝒙 → 𝒙E = min 1,
𝜋 𝒙E 𝑄 𝒙E → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙E



Example: Acceptance Probability

𝜋 𝑥% 𝑇 𝑥% → 𝑥& = 𝜋 𝑥& 𝑇(𝑥& → 𝑥%)
𝜋 𝑥& 𝑇 𝑥& → 𝑥' = 𝜋 𝑥' 𝑇(𝑥' → 𝑥&)
𝜋 𝑥' 𝑇 𝑥% → 𝑥' = 𝜋 𝑥% 𝑇(𝑥' → 𝑥%)

If 𝑄 = 𝑇, but you want to sample from a different stationary 
distribution 𝜋& 𝑥$ = 0.6, 𝜋& 𝑥* = 0.3, 𝜋& 𝑥+ = 0.1

Find the Acceptance Probability



Proposal Distiribution

• Q must be reversible:
– 𝑄 𝑥 → 𝑥C > 0 ⇒ 𝑄 𝑥′ → 𝑥 > 0

• Opposing forces
– Q should try to spread out, to improve mixing
– But then acceptance probability often low

𝐴 𝒙 → 𝒙E = min 1,
𝜋 𝒙E 𝑄 𝒙E → 𝒙
𝜋(𝒙)𝑄 𝒙 → 𝒙E



Relationship to Gibbs Sampling
Gibbs Sampling is a special case of MH

• The GS proposal distribution is
𝑄 𝑥*), 𝐱+* ∣ 𝑥* , 𝐱+* = 𝑃 𝑥*) ∣ 𝐱+*

L𝐱+* denotes all variables except )𝐱𝐢

• Applying Metropolis-Hastings with this proposal, we obtain:

𝐴 𝑥*), 𝐱+* ∣ 𝑥* , 𝐱+* = min 1,
𝑃 𝑥*), 𝐱+* 𝑄 𝑥* , 𝐱+* ∣ 𝑥*), 𝐱+*
𝑃 𝑥* , 𝐱+* 𝑄 𝑥*), 𝐱+* ∣ 𝑥* , 𝐱+*

= min 1,
𝑃 𝑥*), 𝐱+* 𝑃 𝑥* ∣ 𝐱+*
𝑃 𝑥* , 𝐱+* 𝑃 𝑥*) ∣ 𝐱+*

= min 1,
𝑃 𝑥*) ∣ 𝐱+* 𝑃 𝐱+* 𝑃 𝑥* ∣ 𝐱+*
𝑃 𝑥* ∣ 𝐱+* 𝑃 𝐱+* 𝑃 𝑥*) ∣ 𝐱+*

= min(1,1) = 1

GS is simply MH with a proposal that is always accepted!



Summary

• MH is a general framework for building Markov  chains with a 
particular stationary distribution
– Requires a proposal distribution
– Acceptance computed via detailed balance

• Tremendous flexibility in designing proposal  distributions that 
explore the space quickly
– But proposal distribution makes a big difference
– and finding a good one is not always easy

Gibbs Sampler is a special case of MH 



MCMC for Matching
Xi = j if i matched to j

if every Xi has  
different value

otherwise

Daphne Koller



MH for Matching:  
Augmenting Path

1) randomly pick one variable Xi
2) sample Xi, pretending that all values are available
3)pick the variable whose assignment was taken  

(conflict), and return to step 2
• When step 2 creates no conflict, modify assignment  to flip 

augmenting path

Daphne Koller
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Example Results
MH proposal 1 MH proposal 2Gibbs


