Probabilistic Graphical Models

Markov Chain Monte Carlo

Previously

Monte Carlo Sampling

Sample M i.i.d. samples from a distribution P(X = x) and estimate expectation of function f(X)

$$\widehat{E_P}[f(X)] = \frac{1}{M} \sum_{m} f(x_m)$$

If you cannot sample from P(X = x):

Rejection sampling: Sample x from proposal distribution kQ and accept samples proportionally to $\frac{P(x)}{kQ(x)}$

Importance sampling: Sample from proposal distribution Q and weigh sample by $w(x) = \frac{P(x)}{Q(x)}$

For BNs

Monte Carlo Sampling

Forward Sampling: Sample M i.i.d. samples from a distribution P(X = x) and estimate expectation of function f(X)

$$\widehat{E_P}[f(X)] = \frac{1}{M} \sum_m f(x_m)$$

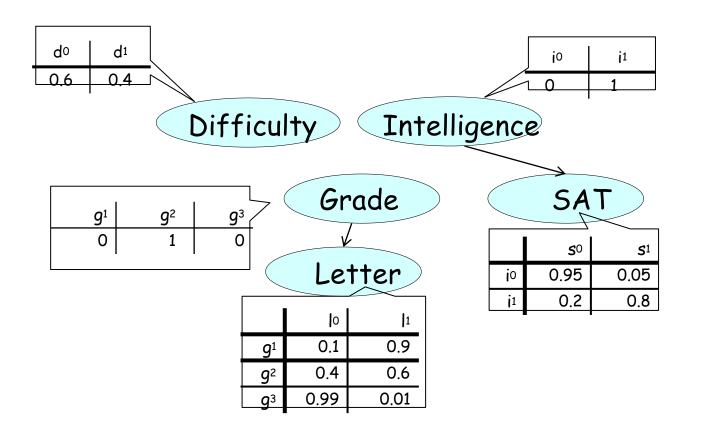
If you cannot sample from P(X = x) (e.g., you want to sample from P(X = x | E = e)

Rejection sampling: Forward sample and accept samples where E=e

Importance sampling: Sample from proposal distribution (mutilated network B_e) and weigh sample by $w(\xi)$

$$w(\xi) = \frac{P(\xi)}{B_e(\xi)}$$

Importance Sampling for BNs



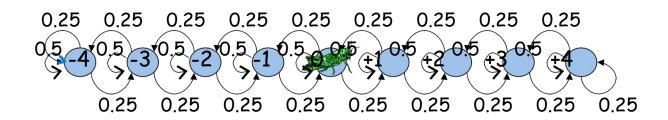
When your evidence is in the leaves, essentially all your sampling is done from the prior distribution

Idea: Sequence of noni.i.d. samples that will start from the prior and hang out in the posterior.

Mutilated Graph $\mathcal{B}_{Z=Z}$, proposal distribution $P_{\mathcal{B}_{Z=Z}}$

Weight of a sample $w(\xi) = \frac{P_{\mathcal{B}}(\xi)}{P_{\mathcal{B}_{Z=Z}}(\xi)}$.

Markov Chain



• A Markov chain defines a probabilistic transition model $T(x \rightarrow x')$ over states x:

- for all
$$x$$
:
$$\sum_{x'} T(x \to x') = 1$$

Daphne Koller

Temporal Dynamics

$$P^{(t+1)}(X^{(t+1)} = x') = \sum_{x} P^{(t)}(X^{(t)} = x)T(x \to x')$$

$$0.25 \quad 0.25 \quad 0.25$$

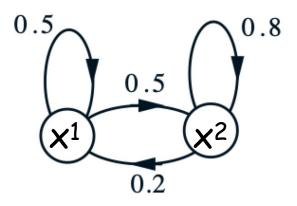
$$0.5 \quad 0.5 \quad 0.5 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25$$

$$0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.25$$

	-2	-1	0	+1	+2
P (0)	0	0	1	0	0
P(1)	0	.25	.5	.25	0
P(2)	.25 ² = .0625	2×(.5×.25) = .25	.5 ² +2×.25 ² = .375	2×(.5×.25) = .25	.25 ² = .0625

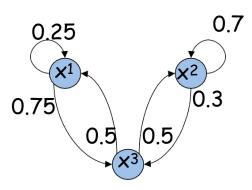
Daphne Koller

Example



Start at x^1	$P(X=x^1)$	n = 0	n = 1	n=2	n = 100	n = 101
	$P(X=x^2) -$					
Start	$P(X=x^1) -$					
at x^2	$P(X=x^2) -$					

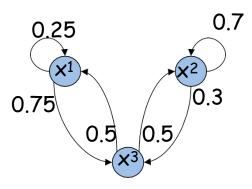
Stationary Distribution



$$P^{(t)}(x') \approx P^{(t+1)}(x') = \sum_{x} P^{(t)}(x)T(x \to x')$$

 $\pi(x') = \sum_{x} \pi(x)T(x \to x')$

Stationary Distribution



$$P^{(t)}(x') \approx P^{(t+1)}(x') = \sum_{x} P^{(t)}(x)T(x \to x')$$

 $\pi(x') = \sum_{x} \pi(x)T(x \to x')$

$$\pi(x^{1}) = 0.25\pi(x^{1}) + 0.5\pi(x^{3})$$

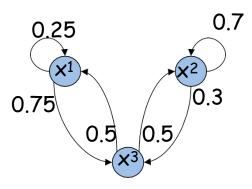
$$\pi(x^{2}) = 0.7\pi(x^{2}) + 0.5\pi(x^{3})$$

$$\pi(x^{3}) = 0.75\pi(x^{1}) + 0.3\pi(x^{2})$$

$$\pi(x^{1}) + \pi(x^{2}) + \pi(x^{3}) = 1$$

Daphne Koller

Stationary Distribution



$$P^{(t)}(x') \approx P^{(t+1)}(x') = \sum_{x} P^{(t)}(x)T(x \to x')$$

 $\pi(x') = \sum_{x} \pi(x)T(x \to x')$

$$\pi(x^{1}) = 0.25\pi(x^{1}) + 0.5\pi(x^{3}) \qquad \pi(x^{1}) = 0.2$$

$$\pi(x^{2}) = 0.7\pi(x^{2}) + 0.5\pi(x^{3}) \qquad \pi(x^{2}) = 0.5$$

$$\pi(x^{3}) = 0.75\pi(x^{1}) + 0.3\pi(x^{2}) \qquad \pi(x^{3}) = 0.3$$

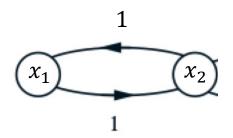
$$\pi(x^{1}) + \pi(x^{2}) + \pi(x^{3}) = 1$$

Daphne Koller

Properties of Markov Chains

Not all Markov Chains have a unique stationary distribution

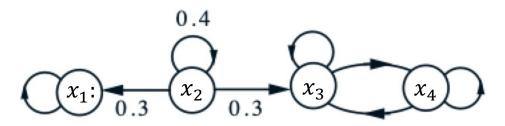
Periodic MC: No stationary distribution



$$P^0(x_1) = 0$$
, then

$$P^{n}(x_1) = 0$$
 if n even
 $P^{n}(x_1) = 1$ if n odd

Reducible MC: No unique stationary distribution, depends on initial state



Start at
$$x_1$$
: $\pi(x_1) = 1$

Start at
$$x_3$$
: $\pi(x_1) = 0$

Start at
$$x_2$$
: $\pi(x_1) = \frac{1}{2}$, for $n \to \infty$

Regular Markov Chains

- A Markov chain is regular if there exists k such that, for every x, x', the probability of getting from x to x' in exactly k steps is > 0
- Theorem: A regular Markov chain converges to a unique stationary distribution regardless of start state

Regular Markov Chains

• A Markov chain is regular if there exists k such that, for every x, x', the probability of getting from x to x' in exactly k steps is > 0

- Sufficient conditions for regularity:
 - Every two states are connected
 - -For every state, there is a self-transition

Using a Markov Chain

- Goal: compute $P(x \in S)$
 - -but P is too hard to sample from directly
- Construct a Markov chain T whose unique stationary distribution is P
- Sample $x^{(0)}$ from some $P^{(0)}$
- For t = 0, 1, 2, ...
 - -Generate $x^{(t+1)}$ from $T(x^t \rightarrow x')$

Using a Markov Chain

 We only want to use samples that are sampled from a distribution close to P

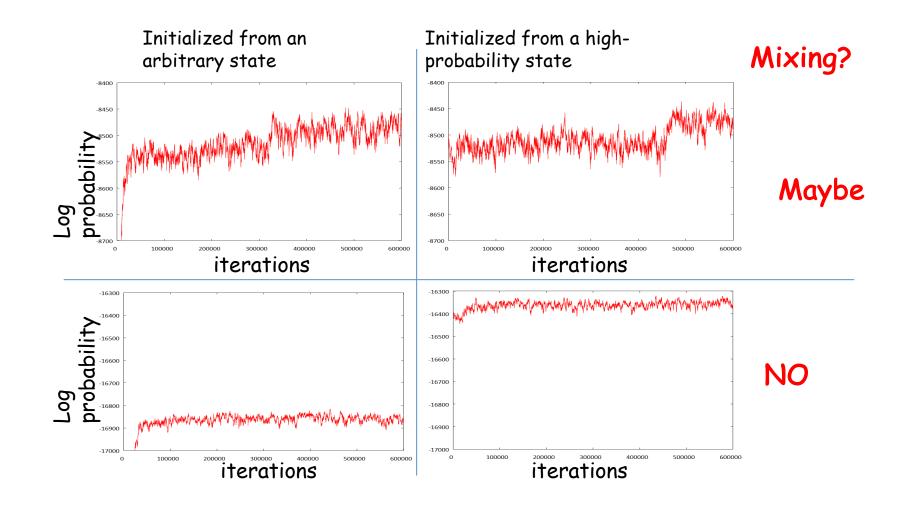
• At early iterations, P(t) is usually far from P

 Start collecting samples only after the chain has run long enough to "mix"

Mixing

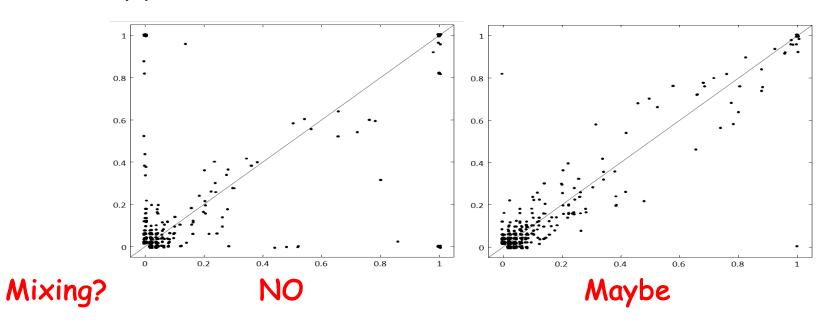
- How do you know if a chain has mixed or not?
 - —In general, you can never "prove" a chain has mixed
 - But in many cases you can show that it has NOT
- How do you know a chain has not mixed?
 - Compare chain statistics in different windows within a single run of the chain
 - -and across different runs initialized differently

Mixing



Mixing

- Each dot is a statistic (e.g., $P(x \in S)$)
- x-position is its estimated value from chain 1
- y-position is its estimated value from chain 2



Using the Samples

- Once the chain mixes, all samples $\mathbf{x}^{(t)}$ are from the stationary distribution π
 - -So we can (and should) use all $x^{(t)}$ for $t > T_{mix}$
 - However, nearby samples are correlated!
 - So we shouldn't overestimate the quality of our estimate by simply counting samples
- The faster a chain mixes, the less correlated (more useful) the samples

MCMC Algorithm Summary I

- For c = 1, ..., C
 - -Sample $x^{(0)}$ from $P^{(0)}$
- Repeat until mixing
 - -For c = 1, ..., C
 - -Generate $x^{(c,t+1)}$ from $T(x^{(c,t+1)} \rightarrow x')$
 - Compare window statistics in different chains to determine mixing
 - -t := t + 1

MCMC Algorithm Summary II

- Repeat until sufficient samples
 - $-D := \emptyset$
 - -For c=1,...,C
 - -Generate $x^{(c,t+1)}$ from $T(x^{(c,t+1)} \rightarrow x')$
 - $D := D \cup x^{(c,t+1)}$
 - -t := t+1
- Let $D = \{x[1], ..., x[M]\}$
- Estimate $E_P[f] \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$

Daphne Koller

Summary

• Pros:

- Very general purpose
- Often easy to implement
- -Good theoretical guarantees as $t \to \infty$

• Cons:

- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working

MCMC for PGMs: Gibbs sampling

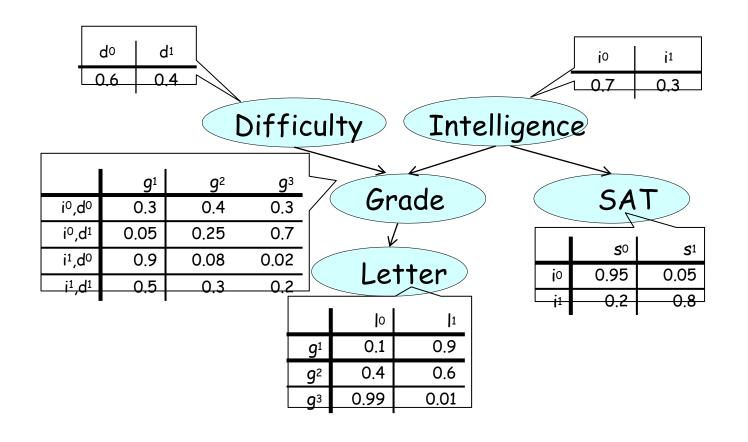
- Target distribution $P_{\Phi}(X_1, ..., X_n)$
- Markov chain state space: complete assignments x to $X = \{X_1, ..., X_n\}$
- Transition model given starting state x:
 - -For i=1,...,n
 - Sample $x_i \sim P_{\Phi}(X_i|x_{-i})$ (all except x_i)
 - Set x' = x
- Example: X_1, X_2, X_3, X_4

MCMC for PGMs: Gibbs sampling

Transition model given starting state x:

- For i=1,...,n
 - Sample $x_i \sim P_{\Phi}(X_i|x_{-i})$ (all except x_i)
 - Set x' = x
- Example: X_1, X_2, X_3, X_4 :
 - Start from a random state, e.g. (0,0,0,0)
 - Sample $x_1 \sim P(X_1|x_2=0, x_3=0, x_4=0)$
 - Sample $x_2 \sim P(X_2|x_1, x_3 = 0, x_4 = 0)$
 - Sample $x_3 \sim P(X_3 | x_1, x_2, x_4 = 0)$
 - Sample $x_4 \sim P(X_4 | x_1, x_2, x_3)$

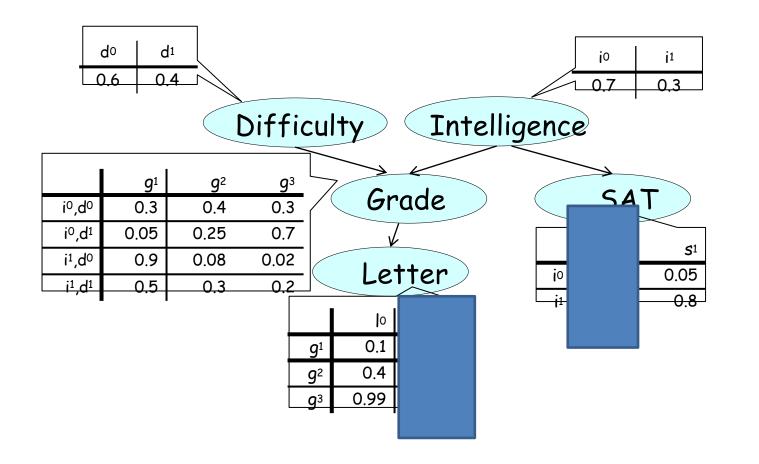
Example



Assume you want to sample from

$$L = l^0, S = s^1$$

Example



Assume you want to sample from

$$L = l^0, S = s^1$$

Step 1: Reduce factors according to evidence.

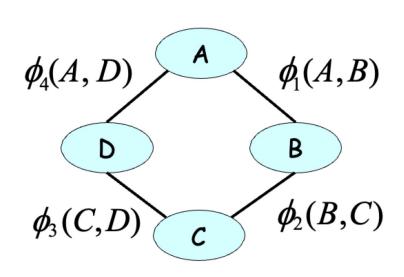
Step 2: Gibbs sampling

Sampling from. $P_{\Phi}(X_i|x_{-i})$

For every step of the Gibbs sampler (every step of the MCMC), you want to sample from

$$P_{\Phi}(X_i \mid \boldsymbol{x}_{-i}) = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})} = \frac{\tilde{P}_{\Phi}(X_i, \boldsymbol{x}_{-i})}{\tilde{P}_{\Phi}(\boldsymbol{x}_{-i})}$$

Another Example



$$P_{\Phi}(A=a|b,c,d) = \frac{\tilde{P}_{\Phi}(a,b,c,d)}{\sum_{A'}\tilde{P}_{\Phi}(A',b,c,d)} =$$

$$= \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{A'}\phi_1(A',b)\phi_2(b,c)\phi_3(c,d)\phi_4(A',d)} =$$

$$= \frac{\phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(a,d)}{\sum_{A'}\phi_1(A',b)\phi_2(b,c)\phi_3(c,d)\phi_4(A',d)}$$

Sampling from. $P_{\Phi}(X_i|x_{-i})$

For every step of the Gibbs sampler (every step of the MCMC), you want to sample from

$$P_{\Phi}(X_i \mid \boldsymbol{x}_{-i}) = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})} = \frac{\tilde{P}_{\Phi}(X_i, \boldsymbol{x}_{-i})}{\tilde{P}_{\Phi}(\boldsymbol{x}_{-i})}$$

Sum over x_{-i}

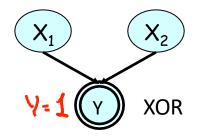
Reminder: Markov Boundary

For every X_i , $P(X_i|V\setminus X_i)=P(X_i|MB(X_i))$

For DAGs: Parents, Children, Spouses

For UGMs: Neighbors

Gibbs Chain and Regularity



X ₁	X ₂	У	Prob
0	0	0	0.25
0	1	1	0.25
1	0	1	0.25
1	1	0	0.25

- If all factors are positive, Gibbs chain is regular
- However, mixing can still be very slow

Summary: Gibbs Sampling

 Converts the hard problem of inference to a sequence of "easy" sampling steps

• Pros:

- Probably the simplest Markov chain for PGMs
- Computationally efficient to sample

• Cons:

- Only applies if we can sample from product of factors
- Often slow to mix, esp. when probabilities are very high
 - How can you move away from the current space?

Reversible Chains

Detailed Balance Equation:

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

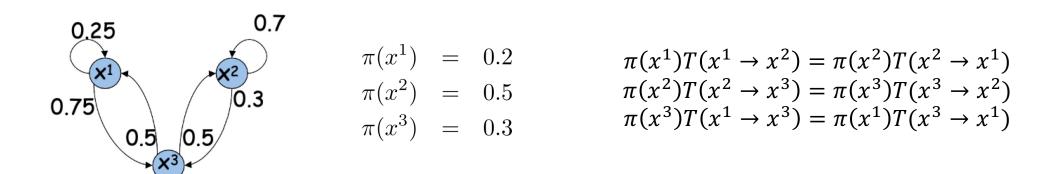
Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π

Reversible Chains

Detailed Balance Equation:

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

Definition: A Markov Chain is reversible if it satisfies the detailed balance equation for a unique distribution π



Metropolis Hastings Chain

Proposal distribution $Q(x \rightarrow x')$

Acceptance probability: $A(x \rightarrow x')$

- At each state x, sample x' from $Q(x \rightarrow x')$
- Accept proposal with probability $A(x \rightarrow x')$
 - If proposal accepted, move to x'
 - —Otherwise stay at x

$$T(x \to x') = Q(x \to x')A(x \to x'), if \ x \neq x'$$

$$T(x \to x) = Q(x \to x) + \sum_{x \neq x'} Q(x \to x')[1 - A(x \to x')]$$

Acceptance Probability

Construct A such that detailed balance holds

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

$$\pi(x)Q(x \to x')A(x \to x') = \pi(x')Q(x' \to x)A(x' \to x)$$

$$\frac{A(x \to x')}{A(x' \to x)} = \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')}$$

Acceptance Probability

Construct A such that detailed balance holds

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

$$\pi(x)Q(x \to x')A(x \to x') = \pi(x')Q(x' \to x)A(x' \to x)$$

$$A(x \to x') = \rho$$

$$A(x' \to x) = 1$$

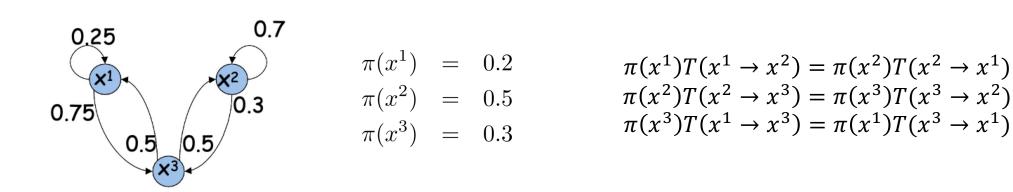
$$A(x' \to x) = \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')}$$

$$A(x \to x') = \min \left[1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')} \right]$$

Example: Acceptance Probability

If Q=T, but you want to sample from a different stationary distribution $\pi'(x^1)=0.6, \pi'(x^2)=0.3, \pi'(x^3)=0.1$

Find the Acceptance Probability



Proposal Distiribution

$$A(\mathbf{x} \to \mathbf{x}') = \min \left[1, \frac{\pi(\mathbf{x}')Q(\mathbf{x}' \to \mathbf{x})}{\pi(\mathbf{x})Q(\mathbf{x} \to \mathbf{x}')} \right]$$

Q must be reversible:

$$-Q(x \to x') > 0 \Rightarrow Q(x' \to x) > 0$$

- Opposing forces
 - Q should try to spread out, to improve mixing
 - But then acceptance probability often low

Relationship to Gibbs Sampling

Gibbs Sampling is a special case of MH

• The GS proposal distribution is

$$Q(x_i', \mathbf{x}_{-i} \mid x_i, \mathbf{x}_{-i}) = P(x_i' \mid \mathbf{x}_{-i})$$

 $(\mathbf{x}_{-i} \text{ denotes all variables except } \mathbf{x_i})$

• Applying Metropolis-Hastings with this proposal, we obtain:

$$A(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) = \min \left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} \mid x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i})} \right)$$

$$= \min \left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})} \right) = \min \left(1, \frac{P(x'_{i} \mid \mathbf{x}_{-i})P(\mathbf{x}_{-i})P(\mathbf{x}_{-i} \mid \mathbf{x}_{-i})}{P(x_{i} \mid \mathbf{x}_{-i})P(\mathbf{x}'_{i} \mid \mathbf{x}_{-i})} \right)$$

$$= \min(1, 1) = 1$$

GS is simply MH with a proposal that is always accepted!

Summary

- MH is a general framework for building Markov chains with a particular stationary distribution
 - Requires a proposal distribution
 - Acceptance computed via detailed balance
- Tremendous flexibility in designing proposal distributions that explore the space quickly
 - But proposal distribution makes a big difference
 - and finding a good one is not always easy

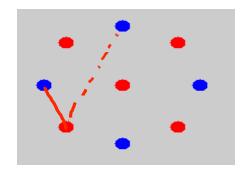
Gibbs Sampler is a special case of MH

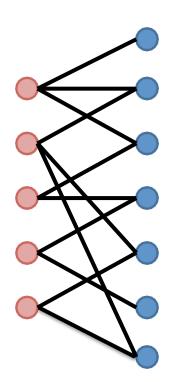
MCMC for Matching

 $X_i = j$ if imatched to

$$P(X_1 = v_1, \dots, X_4 = v_4) \propto$$

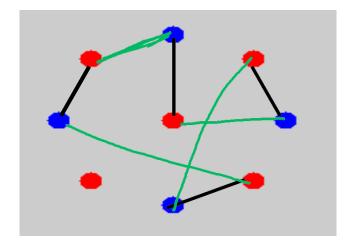
$$\begin{cases} \exp(-\sum_i \operatorname{dist}(i)v_i) & \text{if every X_i has different value} \\ 0 & \text{otherwise} \end{cases}$$





Daphne Koller

MH for Matching: Augmenting Path



- 1) randomly pick one variable X_i
- 2) sample X_i, pretending that all values are available
- 3)pick the variable whose assignment was taken (conflict), and return to step 2
- When step 2 creates no conflict, modify assignment to flip augmenting path

Example Results

