Probabilistic Graphical Models

Exact Inference
Complexity of VE

Belief Propagation



Summary

* Simple algorithm
 Works for both BNs and MNs

* Factor product and summation steps can be done

In any order, subject to:

— when Z is eliminated, all factors involving Z have been
multiplied in

Daphne Koller



Variable Elimination

* Goal: P(J)
+ Eliminate: (,DIHGL,S

Z ¢c(CO)¢p(C, D) (D (G, 1, D)ps(S, DNep (L, G)P;(J, L, S)pu(H,G,))

¢,DI1G,S,LH




Complexity

m
P (Xp) = 1_[ b, Factor product of m,, factors
=1

7. (X, \ {Z}) = Z U (X I\/Ia.rgti)r;alization of a
Z variapie



Factor Product

N, = [Val(Xy)|
N, rows
b1 0.5
al bl cl 0.5-0.5 =0.25
b? 0.8 pt | ¢t Jos ||
. al b1 c? 0.5:-0.7 =0.35
b 0.1 1 .
i b c 0.7 A 2 || & 08-0.1=008
b 0
. b? B 0.1 al | b2 c? 0.8-0.2=0.16
b 0.3 a? bl cl 0.1-0.5 = 0.05
2 2 . . .
bz 0.9 b C 0.2
' a? | bt c? 0.1-0.7 = 0.07
a? b? cl 0-01=0
mg a? b2 c2 0-02=0
lpk(Xk) = ‘ ‘ o; a3 | bt | 0.3-0.5 = 0.15
i=1 a3 | bt c? 0.3-0.7 = 0.21
a3 b? cl 0.9-0.1 =0.09
Cost: (mk—l)XNk @@ | b2 c2 09-0.2 = 0.18




Factor Marginalization

L 4 5:05=0.2 1 .1\ — 1 .1
b c 0.5-0.5 = 0.25 ¢(a,c)—2¢(a,c,b)
bl c? 0.5-0.7=0.35 b
b2 cl 0.8-0.1 =0.08 " "
2 2 a c 033
b C 0.8-0.2=0.16
al c? 0.51
bl cl 0.1-0.5=0.05
a’ cl 0.05
bl c? 0.1-0.7=0.07
a’ c? 0.07
b? cl 0-01=0
a3 cl 0.24
b2 c? 0-02=0
a’ c? 0.39
b1 cl 0.3-0.5 = 0.15
bl c? 0.3-0.7=0.21
b2 cl 09-0.1=0.09
b | 09-02 =018 Cost: ~ Ny, additions




Complexity

Complexity of Variable Elimination

Start with m factors
 m < n for Bayesian networks (one for every variable)
 can be larger for Markov networks

At each elimination step generate 1 factor,

At most n elimination steps

Total number of factors: m* < m+n



Complexity

N = max(N, ) = size of the largest factor
Number of product operations:

o Yu(mp — 1D * N, < Yp(my — 1) * N =

=Nx* ) ((mp—1)<Nx*(m-+n)
Z k

Number of sum operations: n * ), N, < n* N

Linear in N and m*



Complexity
N = max(N,) = size of the largest factor
 Linearin N and m”*

* But!
* Np = [Val(Xy)| = 0(d"*)
 d = max(|Val(X;)|) dwvalues in their scope
* 1, = |X}| = cardinality of the scope of the k-th factor



Step

Elimination ordering?

Variable
eliminated

C

D

I

Factors
used

$c(C), ép(D,C)
71(D), ¢¢(G, 1, D)
72(G, D), ¢ (D), $s(S, 1)
¢u(H,G,J)
73(G,S), 14(G, ))$L(L, G)
5 (J,1,S) ;0 L,S)
76 (/,L)

Variables
involved

D,C
G,I,D
G,I1,S
H,G,]
G,J,L,S
LS

J,L

New
factor

11(D)
7,(G, 1)
73(G, S)
14(G,))

75 (J,L,S)
T U, L)
7 ()



Different elimination ordering?

Step \(ar_iable
eliminated
1 G
2 I
3 S
4 L
g H
6 C
7 D

Z ¢c(C)¢p(C, D) (NP (G, 1, D)ps(S, DNep (L, G)P;(J, L, S)pu(H,G,))

¢,DI1G,S,LH



Step

Different elimination ordering?

Variable
eliminated

G

I

S

Factors
used

¢6(G,1,D),¢1(L,G), pu(H,G,])
¢;(D), ps(S, 1), 7,(I,D,L,S,], H)
¢,0,L,S),72(D,L,S,], H)
3(D, L,J, H)
74(D,], H)
¢c(C), ¢p(D,C)

TS(D'])l T6(D)

Variables
involved

G,I,D,L,J,H
S,,D,L,J],H
D,LS,],H
D,L,J,H
D,],H
D,J,C

D,]

New
factor

t1(I,D,L,], H)
7,(D,L,S,], H)
t3(D,L,], H)
74(D,J, H)
t5(D,))
(D)

77(J)



Complexity and Elimination Ordering

Eliminate A first:

(4)
Eliminate B,’s first @(‘@’@
©



Graphical Perspective

Z ¢c(CO)¢p(C, D) (D (G, 1, D)ps(S, DNep (L, G)P;(J, L, S)pu(H,G,))

¢,DI1G,S,LH




Step 0: Moralize the Graph

Z ¢c(CO)¢p(C, D) (D (G, 1, D)ps(S, DNep (L, G)P;(J, L, S)pu(H,G,))

¢,DI1G,S,LH




Step 1: Eliminate C

Step \./ar_iable Yariables New
eliminated involved factor
1 C D,C 71(D)
2 D G,1,D 7,(G, 1)
3 I G,1,S 73(G,S)
4 H H,G,] 74(G,))
5 G G,J,L,S s (J,L,S)
6 S /LS 76 (J,L)
7 I J,L 77 (J)




Step 2: Eliminate D

Step \./ar_iable Yariables New
eliminated involved factor
1 C D,C 71(D)
2 D G,1,D 7,(G, 1)
3 I G,1,S 73(G,S)
4 H H,G,] 74(G,))
5 G G,J,L,S s (J,L,S)
6 S /LS 76 (J,L)
7 I J,L 77 (J)




Step 3: Eliminate |

Step \./ar_iable Yariables New
eliminated involved factor
1 C D,C 71(D)
2 D G,1,D 7,(G, 1)
3 I G,1,S 73(G,S)
4 H H,G,] 74(G,))
5 G G,J,L,S s (J,L,S)
6 S /LS 76 (J,L)
7 I J,L 77 (J)




Step 4: Eliminate H

Step \./ar_iable Yariables New
eliminated involved factor
1 C D,C 71(D)
2 D G,1,D 7,(G, 1)
3 I G,1,S 73(G,S)
4 H H,G,] 74(G,))
5 G G,J,L,S s (J,L,S)
6 S /LS 76 (J,L)
7 I J,L 77 (J)




Steps 5,6,7: Eliminate G

Step \./ar_iable Yariables New
eliminated involved factor
1 C D,C 71(D)
2 D G,1,D 7,(G, 1)
3 I G,1,S 73(G,S)
4 H H,G,] 74(G,))
5 G G,J,L,S s (J,L,S)
6 S /LS 76 (J,L)
7 I J,L 77 (J)




Induced Graph of an elimination ordering

e The induced graph /4, , over factors ® and ordering a:

e Undirected graph

e X;and X; are connected if they appeared in the same factor in a run of the
VE algorithm using a as the ordering

Theorem: Every factor produced during VE is a clique in the induced graph

71(D) = XcPc(C)pp(C, D)
TZ(GrI) = ZquG(GJI'D)Tl(D)

73(5,G) = X1 Ps (S, D (1)T2(G, 1)
T4(G,]) = ZquH(Hr G'])

T5(L,J) = X6 P (L, G)T3(S, G)T4(G,])
Te = ZL,S¢](]» L,S)ts(L,])




Induced Graph of an elimination ordering

e The induced graph /4, , over factors ® and ordering a:
e Undirected graph

e X; and X; are connected if they appeared in the same factor in a
run of the VE algorithm using a as the ordering

Theorem: Every maximal clique in the graph is a factor produced during VE
Consider a maximal clique some variable is first to be eliminated
once a variable is eliminated:

no new neighbor = when eliminated it already had all the clique members as
neighbors

= participated in factors with all the other variables
= when multiplied together, we have a factor oven all of them



Complexity based on graphs

The width of an induced graph is the number of
nodes in the largest clique in the graph minus 1

Minimal induced width of a graph K is
main (Width(IK,a))

Provides a lower bound on best performance of VE
to a model factorizing over K




Finding a good elimination ordering

Theorem: For a graph H, determining whether there exists
an elimination ordering for H with induced width K is NP-
complete

Note: This NP-hardness result is distinct from the NP-
hardness result of inference

- Even given the optimal ordering, inference may still be
exponential



Finding a good elimination ordering

Greedy search using heuristic cost function - At each point,

eliminate node with smallest cost

Possible cost functions:

* min-neighbors: # neighbors in current graph

* min-weight: weight (# values) of factor formed

 min-fill: number of new fill edges

 weighted min-fill: total weight of new fill edges (edge
weight = product of weights of the 2 nodes)



Finding a good elimination ordering

Finding Elimination Orderings

e Theorem: The induced graph is triangulated
- No loops of length > 3 without a "bridge”

-all cycles of four or more vertices have a chord, which is an edge
that is not part of the cycle but connects two vertices of the cycle.

e Can find elimination ordering by finding a low-width triangulation
of original graph Hg



Example: Robot localization

Robot Localization & Mapping

—
a 9 @ @ Q o0 0 °
robot pos

pose
(2 (2 () (z (2)

LZ sensor observation

L 3 '



Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

Robot Localization & Mapping

p




Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

Eliminate Poses then Landmarks

Lwd Jr,‘,l.

1e Koller




Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

Eliminate Landmarks then Poses




Example: Robot localization

Min-Fill Elimination




Summary

Variable elimination allows computation of marginals /
conditionals

Algorithm is valid for any graphical model

Suffices to show variable elimination for MRFs, since Bayes
nets - MRFs by moralization

Worst-case complexity is dependent on elimination order,
and is exponential in number of variables

Optimal ordering = treewidth, is NP-hard to compute



Pt. 2: Message-passing inference



Step

Variable Elimination

Variable
eliminated

C

D

I

Factors
used

$c(C), ép(D,C)
71(D), ¢¢(G, 1, D)
72(G, D), ¢ (D), $s(S, 1)
¢u(H,G,J)
73(G,S), 14(G, ))$L(L, G)
5 (J,1,S) ;0 L,S)
76 (/,S)

Variables
involved

D,C
D,I,G
G,I1,S
G,H,S
G,J,L,S
LS

J,L

New
factor

11(D)
7,(G, 1)
73(G, S)
14(G,))

75 (J,L,S)
T U, L)
7 ()



Understanding Variable Elimination

s



Cluster Trees

Clusters

[I:C,D Jé[Z:D,I,G 3{ 3:G,I,S]
G, S

l
s:GaLsF2H 6:uLs o 7:uL |
T GJ SepSets
(4:G.HJ)

Variable Elimination as message passing



Message passing

[ 1t J%[Z:D,I,GJ%[& G,I,S]
l|Gs

[5:G,J,L3J§f 6:J,L,s]%{ 7.JL |
tG7s

[4: G,H,J]

8.,(D) = z d(C)P(C,D) 035(G,S) = z $(G,1,5)635(G, 1)

523(G,1) = ) $(D,1,6)8:2(D)



Message passing

512(D) = ) $(C)$(C,D)

5:2(6,1) = ) $(D,1,6)8:,(D)

35565 = ) $GLSGCD 5 g1y = s5,0,5,0
I
S
515G, = ) $(G.H.)
H

556(1,S,1) = ) 845(6.)835(G, S)P(L, G)
G



Clique-Tree Message Passing

1. Pick a node to be your root.
2. For each node i, initialize the potential of the node

=H¢i

3. Start from a leaf and send message to all neighbors
l—>] ZC Sl]l/Jl HkE(Nb -{jH 6k—>l
4. Repeat for every node that is ready to transmit a

message (i.e., has received messages from every
neighbor)



Properties of Cluster Trees

Family Preservation:

For each factor ¢, € @, there exists a cluster C; s.t. Scope [¢,] € C;
every factor has a node that can accommodate it

Running Intersection:

For each pair of clusters (j, (; and variable X € C; N C;, in the
unique path between C; and C;, all clusters and sepsets contain X.

clusters that include the same variable need to communicate
for consistency



Running Intersection

h
¢

Which clusters need to include X?



