Probabilistic Graphical Models

Exact Inference

Complexity of VE

Belief Propagation

- Simple algorithm
- Works for both BNs and MNs
- Factor product and summation steps can be done in any order, subject to:
 - when Z is eliminated, all factors involving Z have been multiplied in

Variable Elimination

- Goal: P(J)
- Eliminate: <u>C</u>,D,I,H,G,L,S

 $\sum_{C,D,I,G,S,L,H} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J)$

$$\psi_k(\boldsymbol{X}_k) = \prod_{i=1}^{m_k} \phi_i$$
$$\tau_k(\boldsymbol{X}_k \setminus \{Z\}) = \sum_{Z} \psi_k(\boldsymbol{X}_k)$$

Factor product of m_k factors

Marginalization of a variable

Factor Product

$$N_k = |Val(X_k)|$$

 N_k rows

a ¹	b^1	0.5
a ¹	b^2	0.8
a ²	b^1	0.1
a ²	b^2	0
a ³	b^1	0.3
a ³	b^2	0.9

/	b^1	<i>c</i> ¹	0.5
	b^1	<i>c</i> ²	0.7
	<i>b</i> ²	<i>c</i> ¹	0.1
	<i>b</i> ²	<i>c</i> ²	0.2

$$\psi_k(\boldsymbol{X}_k) = \prod_{i=1}^{m_k} \phi_i$$

Cost: $(m_k - 1) \times N_k$

a ¹	<i>b</i> ¹	C ¹	$0.5 \cdot 0.5 = 0.25$
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ²	$0.5 \cdot 0.7 = 0.35$
<i>a</i> ¹	<i>b</i> ²	<i>C</i> ¹	$0.8 \cdot 0.1 = 0.08$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	$0.8 \cdot 0.2 = 0.16$
a ²	<i>b</i> ¹	<i>c</i> ¹	$0.1 \cdot 0.5 = 0.05$
a ²	<i>b</i> ¹	<i>c</i> ²	$0.1 \cdot 0.7 = 0.07$
a ²	<i>b</i> ²	<i>C</i> ¹	$0 \cdot 0.1 = 0$
a ²	<i>b</i> ²	<i>c</i> ²	$0 \cdot 0.2 = 0$
<i>a</i> ³	<i>b</i> ¹	C ¹	$0.3 \cdot 0.5 = 0.15$
<i>a</i> ³	<i>b</i> ¹	<i>c</i> ²	$0.3 \cdot 0.7 = 0.21$
<i>a</i> ³	<i>b</i> ²	<i>C</i> ¹	$0.9 \cdot 0.1 = 0.09$
a ³	h^2	c^2	$0.9 \cdot 0.2 = 0.18$

Factor Marginalization

a ¹	<i>b</i> ¹	<i>c</i> ¹	$0.5 \cdot 0.5 = 0.25$
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ²	$0.5 \cdot 0.7 = 0.35$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ¹	$0.8 \cdot 0.1 = 0.08$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	$0.8 \cdot 0.2 = 0.16$
a ²	<i>b</i> ¹	<i>c</i> ¹	$0.1 \cdot 0.5 = 0.05$
a ²	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a ²	<i>b</i> ²	<i>c</i> ¹	$0 \cdot 0.1 = 0$
a ²	<i>b</i> ²	c^2	$0 \cdot 0.2 = 0$
a ³	<i>b</i> ¹	<i>c</i> ¹	$0.3 \cdot 0.5 = 0.15$
<i>a</i> ³	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
a^3	b^2	<i>c</i> ¹	$0.9 \cdot 0.1 = 0.09$
a^3	b^2	<i>c</i> ²	$0.9 \cdot 0.2 = 0.18$

$$\phi(a^1,c^1) = \sum_b \phi(a^1,c^1,b)$$

a ¹	<i>c</i> ¹	033
a^1	<i>c</i> ²	0.51
a ²	<i>c</i> ¹	0.05
a^2	<i>c</i> ²	0.07
<i>a</i> ³	<i>c</i> ¹	0.24
a^3	<i>c</i> ²	0.39

Cost: ~ N_k additions

- Complexity of Variable Elimination
- Start with *m* factors
 - $m \le n$ for Bayesian networks (one for every variable)
 - can be larger for Markov networks
- At each elimination step generate 1 factor,
- At most n elimination steps
- Total number of factors: $m^* \leq m + n$

- $N = \max(N_k) = \text{size of the largest factor}$
- Number of product operations:

•
$$\sum_{k} (m_k - 1) * N_k \le \sum_{k} (m_k - 1) * N =$$

= $N * \sum_{k} (m_k - 1) \le N * (m + n)$

- Number of sum operations: $n * \sum_k N_k \le n * N$
- Linear in N and m^*

- $N = \max(N_k) = \text{size of the largest factor}$
- Linear in N and m^*
- But!
 - $N_k = |Val(\boldsymbol{X_k})| = O(d^{r_k})$
 - $d = \max(|Val(X_i)|)$ d values in their scope
 - $r_k = |\mathbf{X}_k| = \text{cardinality of the scope of the } k$ -th factor

Elimination ordering?

Step	Variable eliminated	Factors used	Variables involved	New factor
1	С	$\phi_C(C), \phi_D(D,C)$	D, C	$\tau_1(D)$
2	D	$\tau_1(D), \phi_G(G, I, D)$	G, I, D	$ au_2(G,I)$
3	Ι	$\tau_2(G,I),\phi_I(I),\phi_S(S,I)$	G, I, S	$ au_3(G,S)$
4	Н	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_3(G,S), \tau_4(G,J)\phi_L(L,G)$	G, J, L, S	$\tau_5(J,L,S)$
6	S	$\tau_5(J,L,S)\phi_J(J,L,S)$	J, L, S	$\tau_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Different elimination ordering?

Step	Variable eliminated
1	G
2	Ι
3	S
4	L
5	Н
6	С
7	D

 $\sum_{C,D,I,G,S,L,H} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J)$

Different elimination ordering?

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_G(G, I, D), \phi_L(L, G), \phi_H(H, G, J)$	G, I, D, L, J, H	$\tau_1(I,D,L,J,H)$
2	Ι	$\phi_I(I), \phi_S(S, I), \tau_1(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_2(D,L,S,J,H)$
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	D, L, S, J, H	$\tau_3(D,L,J,H)$
4	L	$ au_3(D,L,J,H)$	D, L, J, H	$ au_4(D,J,H)$
5	Н	$ au_4(D,J,H)$	D,J,H	$ au_5(D,J)$
6	С	$\phi_C(C), \phi_D(D,C)$	D,J,C	$\tau_6(D)$
7	D	$\tau_5(D,J), \tau_6(D)$	D,J	$ au_7(J)$

Complexity and Elimination Ordering

Eliminate A first:

Eliminate B_i 's first:

Graphical Perspective

Step 0: Moralize the Graph

Step 1: Eliminate C

Step	Variable eliminated	Variables involved	New factor
1	С	D, C	$\tau_1(D)$
2	D	G, I, D	$ au_2(G,I)$
3	Ι	G, I, S	$ au_3(G,S)$
4	Н	H,G,J	$ au_4(G,J)$
5	G	G, J, L, S	$\tau_5(J,L,S)$
6	S	J, L, S	$\tau_6(J,L)$
7	L	J, L	$ au_7(J)$

Step 2: Eliminate D

Step	Variable eliminated	Variables involved	New factor
1	С	D, C	$ au_1(D)$
2	D	G, I, D	$ au_2(G,I)$
3	Ι	G, I, S	$ au_3(G,S)$
4	Н	H,G,J	$ au_4(G,J)$
5	G	G, J, L, S	$\tau_5\left(J,L,S\right)$
6	S	J, L, S	$ au_6(J,L)$
7	L	J, L	$ au_7(J)$

Step 3: Eliminate I

Step	Variable eliminated	Variables involved	New factor
1	С	D, C	$ au_1(D)$
2	D	G, I, D	$ au_2(G,I)$
3	Ι	G, I, S	$\tau_3(G,S)$
4	Н	H,G,J	$ au_4(G,J)$
5	G	G, J, L, S	$\tau_5\left(J,L,S\right)$
6	S	J, L, S	$ au_6(J,L)$
7	L	J, L	$ au_7(J)$

Step 4: Eliminate H

Step	Variable eliminated	Variables involved	New factor
1	С	D, C	$\tau_1(D)$
2	D	G, I, D	$ au_2(G,I)$
3	Ι	G, I, S	$ au_3(G,S)$
4	Н	H,G,J	$ au_4(G,J)$
5	G	G, J, L, S	$\tau_5(J,L,S)$
6	S	J, L, S	$ au_6(J,L)$
7	L	J, L	$ au_7(J)$

Steps 5,6,7: Eliminate G

Step	Variable eliminated	Variables involved	New factor
1	С	D, C	$ au_1(D)$
2	D	G, I, D	$ au_2(G,I)$
3	Ι	G, I, S	$ au_3(G,S)$
4	Н	H,G,J	$ au_4(G,J)$
5	G	G, J, L, S	$\tau_5\left(J,L,S\right)$
6	S	J, L, S	$ au_6(J,L)$
7	L	J, L	$ au_7(J)$

Induced Graph of an elimination ordering

- The induced graph $I_{\Phi,a}$ over factors Φ and ordering a:
- Undirected graph
- *X_i* and *X_j* are connected if they appeared in the same factor in a run of the VE algorithm using *a* as the ordering

Theorem: Every factor produced during VE is a clique in the induced graph

$$\tau_1(D) = \sum_C \phi_C(C) \phi_D(C, D)$$

$$\tau_2(G, I) = \sum_D \phi_G(G, I, D) \tau_1(D)$$

$$\tau_3(S, G) = \sum_I \phi_S(S, I) \phi_I(I) \tau_2(G, I)$$

$$\tau_4(G, J) = \sum_H \phi_H(H, G, J)$$

$$\tau_5(L, J) = \sum_G \phi_L(L, G) \tau_3(S, G) \tau_4(G, J)$$

$$\tau_6 = \sum_{L,S} \phi_J(J, L, S) \tau_5(L, J)$$

Induced Graph of an elimination ordering

- The induced graph $I_{\Phi,a}$ over factors Φ and ordering a:
- Undirected graph
- *X_i* and *X_j* are connected if they appeared in the same factor in a run of the VE algorithm using *a* as the ordering

Theorem: Every maximal clique in the graph is a factor produced during VE Consider a maximal clique some variable is first to be eliminated once a variable is eliminated:

no new neighbor \Rightarrow when eliminated it already had all the clique members as neighbors

 \Rightarrow participated in factors with all the other variables

 \Rightarrow when multiplied together, we have a factor oven all of them

Complexity based on graphs

- The width of an induced graph is the number of nodes in the largest clique in the graph minus 1
- Minimal induced width of a graph K is $\min_{a} \left(width(I_{K,a}) \right)$
- Provides a lower bound on best performance of VE to a model factorizing over K

Finding a good elimination ordering

Theorem: For a graph H, determining whether there exists an elimination ordering for H with induced width K is NPcomplete

Note: This NP-hardness result is distinct from the NPhardness result of inference

- Even given the optimal ordering, inference may still be exponential

Finding a good elimination ordering

- Greedy search using heuristic cost function At each point, eliminate node with smallest cost
- Possible cost functions:
 - min-neighbors: # neighbors in current graph
 - min-weight: weight (# values) of factor formed
 - min-fill: number of new fill edges
 - weighted min-fill: total weight of new fill edges (edge weight = product of weights of the 2 nodes)

Finding a good elimination ordering

Finding Elimination Orderings

- Theorem: The induced graph is triangulated
 - No loops of length > 3 without a "bridge"

-all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

- Can find elimination ordering by finding a low-width triangulation of original graph H_Φ

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006 Eliminate Poses then Landmarks

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006 Eliminate Landmarks then Poses

Min-Fill Elimination

Summary

Variable elimination allows computation of marginals / conditionals

Algorithm is valid for any graphical model

Suffices to show variable elimination for MRFs, since Bayes nets \rightarrow MRFs by moralization

Worst-case complexity is dependent on elimination order, and is exponential in number of variables

Optimal ordering = treewidth, is NP-hard to compute

Pt. 2: Message-passing inference

Variable Elimination

Step	Variable eliminated	Factors used	Variables involved	New factor
1	С	$\phi_C(C), \phi_D(D,C)$	D, C	$\tau_1(D)$
2	D	$\tau_1(D), \phi_G(G, I, D)$	D, I, G	$ au_2(G,I)$
3	Ι	$\tau_2(G,I),\phi_I(I),\phi_S(S,I)$	G, I, S	$ au_3(G,S)$
4	Н	$\phi_H(H,G,J)$	G,H,S	$ au_4(G,J)$
5	G	$\tau_3(G,S), \tau_4(G,J)\phi_L(L,G)$	G, J, L, S	$\tau_5(J,L,S)$
6	S	$\tau_5(J,L,S)\phi_J(J,L,S)$	J, L, S	$\tau_6(J,L)$
7	L	$\tau_6(J,S)$	J,L	$ au_7(J)$

Understanding Variable Elimination

Cluster Trees

Variable Elimination as message passing

Message passing

$$\delta_{12}(D) = \sum_{D} \phi(C)\phi(C,D) \qquad \delta_{35}(G,S) = \sum_{I} \phi(G,I,S)\delta_{35}(G,I)$$

$$\delta_{23}(G,I) = \sum_{D} \phi(D,I,G)\delta_{12}(D)$$

Message passing

$$\delta_{12}(D) = \sum_{D} \phi(C)\phi(C,D)$$

$$\delta_{23}(G,I) = \sum_{D} \phi(D,I,G)\delta_{12}(D)$$

$$\delta_{35}(G,S) = \sum_{I} \phi(G,I,S)\delta_{35}(G,I)$$

$$\delta_{45}(G,J) = \sum_{H} \phi(G,H,J)$$

$$\delta_{56}(J,S,L) = \sum_{G} \delta_{45}(G,J)\delta_{35}(G,S)\phi(L,G)$$

$$\delta_{67}(J,L) = \sum_{S} \delta_{56}(J,S,L)$$

Clique-Tree Message Passing

- 1. Pick a node to be your root.
- 2. For each node *i*, initialize the potential of the node

$$\psi_i = \prod_i \phi_i$$

3. Start from a leaf and send message to all neighbors $\delta_{i \to j} = \sum_{c_i - s_{i,j}} \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i}$ 4. Repeat for every node that is ready to transmit a message (i.e., has received messages from every

neighbor)

Properties of Cluster Trees

Family Preservation:

For each factor $\phi_k \in \Phi$, there exists a cluster C_i s.t. Scope $[\phi_k] \subseteq C_i$ every factor has a node that can accommodate it

Running Intersection:

For each pair of clusters C_i, C_j and variable $X \in C_i \cap C_j$, in the unique path between C_i and C_j , all clusters and sepsets contain X. clusters that include the same variable need to communicate for consistency

Running Intersection

Which clusters need to include X?