Probabilistic Graphical Models

Exact Inference

Complexity of VE
Belief Propagation

Summary

- Simple algorithm
- Works for both BNs and MNs
- Factor product and summation steps can be done in any order, subject to:
- when Z is eliminated, all factors involving Z have been multiplied in

Variable Elimination

- Goal: $\quad P(J)$
- Eliminate: C, D, I, H, G, L, S
$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Complexity

$$
\begin{aligned}
\psi_{k}\left(\boldsymbol{X}_{k}\right) & =\prod_{i=1}^{m_{k}} \phi_{i} \\
\tau_{k}\left(\boldsymbol{X}_{k} \backslash\{Z\}\right) & =\sum_{Z} \psi_{k}\left(\boldsymbol{X}_{k}\right)
\end{aligned}
$$

Factor product of m_{k} factors

Marginalization of a variable

Factor Product

$$
\begin{gathered}
N_{k}=\left|\operatorname{Val}\left(\boldsymbol{X}_{\boldsymbol{k}}\right)\right| \\
N_{k} \text { rows }
\end{gathered}
$$

a^{1}	b^{1}	0.5
a^{1}	b^{2}	0.8
a^{2}	b^{1}	0.1
a^{2}	b^{2}	0
a^{3}	b^{1}	0.3
a^{3}	b^{2}	0.9

b^{1}	c^{1}	0.5
b^{1}	c^{2}	0.7
b^{2}	c^{1}	0.1
b^{2}	c^{2}	0.2

$$
\psi_{k}\left(\boldsymbol{X}_{k}\right)=\prod_{i=1}^{m_{k}} \phi_{i}
$$

Cost: $\left(m_{k}-1\right) \times N_{k}$

a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

Factor Marginalization

a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

$$
\begin{aligned}
& \phi\left(a^{1}, c^{1}\right)=\sum_{b} \phi\left(a^{1}, c^{1}, b\right) \\
& \qquad \begin{array}{|c|c|c|}
\hline a^{1} & c^{1} & 033 \\
\hline a^{1} & c^{2} & 0.51 \\
\hline a^{2} & c^{1} & 0.05 \\
\hline a^{2} & c^{2} & 0.07 \\
\hline a^{3} & c^{1} & 0.24 \\
\hline a^{3} & c^{2} & 0.39 \\
\hline
\end{array}
\end{aligned}
$$

Cost: $\sim N_{k}$ additions

Complexity

- Complexity of Variable Elimination
- Start with m factors
- $m \leq n$ for Bayesian networks (one for every variable)
- can be larger for Markov networks
- At each elimination step generate 1 factor,
- At most n elimination steps
- Total number of factors: $m^{\star} \leqslant m+n$

Complexity

- $N=\max \left(N_{k}\right)=$ size of the largest factor
- Number of product operations:
- $\quad \sum_{k}\left(m_{k}-1\right) * N_{k} \leq \sum_{k}\left(m_{k}-1\right) * N=$

$$
=N * \sum_{k}\left(m_{k}-1\right) \leq N *(m+n)
$$

- Number of sum operations: $n * \sum_{k} N_{k} \leq n * N$
- Linear in N and m^{*}

Complexity

- $N=\max \left(N_{k}\right)=$ size of the largest factor
- Linear in N and m^{*}
- But!
- $N_{k}=\left|\operatorname{Val}\left(\boldsymbol{X}_{k}\right)\right|=O\left(d^{r_{k}}\right)$
- $d=\max \left(\left|\operatorname{Val}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)\right|\right) \mathrm{d}$ values in their scope
- $r_{k}=\left|\mathbf{X}_{k}\right|=$ cardinality of the scope of the k-th factor

Elimination ordering?

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_{C}(C), \phi_{D}(D, C)$	D, C	$\tau_{1}(D)$
2	D	$\tau_{1}(D), \phi_{G}(G, I, D)$	G, I, D	$\tau_{2}(G, I)$
3	H	$\tau_{2}(G, I), \phi_{I}(I), \phi_{S}(S, I)$	H, I, S	$\tau_{3}(G, S)$
4	G	$\phi_{H}(H, G, J)$	G, J, L, S	$\tau_{4}(G, J)$
5	S	$\tau_{3}(G, S), \tau_{4}(G, J) \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$	
6	L	$\tau_{5}(J, L, S) \phi_{J}(J, L, S)$	J, L	$\tau_{6}(J, L)$
7	$\tau_{6}(J, L)$	$\tau_{7}(J)$		

Different elimination ordering?

Step	Variable eliminated
1	G
2	I
3	S
4	H
5	C
7	D

$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Different elimination ordering?

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_{G}(G, I, D), \phi_{L}(L, G), \phi_{H}(H, G, J)$	G, I, D, L, J, H	$\tau_{1}(I, D, L, J, H)$
2	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{1}(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_{2}(D, L, S, J, H)$
3	S	$\phi_{J}(J, L, S), \tau_{2}(D, L, S, J, H)$	D, L, S, J, H	$\tau_{3}(D, L, J, H)$
4	L	$\tau_{3}(D, L, J, H)$	D, L, J, H	$\tau_{4}(D, J, H)$
5	H	$\tau_{4}(D, J, H)$	D, J, H	$\tau_{5}(D, J)$
6	C	$\phi_{C}(C), \phi_{D}(D, C)$	D, J, C	$\tau_{6}(D)$
7	D	$\tau_{5}(D, J), \tau_{6}(D)$	D, J	$\tau_{7}(J)$

Complexity and Elimination Ordering

Eliminate A first:

Eliminate B_{i} 's first:

Graphical Perspective

$$
\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)
$$

Step 0: Moralize the Graph

$$
\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)
$$

Step 1: Eliminate C

Step	Variable eliminated	Variables involved	New factor
1	C	D, C	$\tau_{1}(D)$
2	D	G, I, D	$\tau_{2}(G, I)$
3	I	G, I, S	$\tau_{3}(G, S)$
4	G	H, G, J	$\tau_{4}(G, J)$
5	S	J, L, S	$\tau_{5}(J, L, S)$
6	L	J, L	$\tau_{6}(J, L)$
7		$\tau_{7}(J)$	

Step 2: Eliminate D

Step	Variable eliminated	Variables involved	New factor
1	C	D, C	$\tau_{1}(D)$
2	D	G, I, D	$\tau_{2}(G, I)$
3	I	G, I, S	$\tau_{3}(G, S)$
4	G	H, G, J	$\tau_{4}(G, J)$
5	S	J, L, S	$\tau_{5}(J, L, S)$
6	L	J, L	$\tau_{6}(J, L)$
7			$\tau_{7}(J)$

Step 3: Eliminate I

Step	Variable eliminated	Variables involved	New factor
1	C	D, C	$\tau_{1}(D)$
2	D	G, I, D	$\tau_{2}(G, I)$
3	I	G, I, S	$\tau_{3}(G, S)$
4	G	H, G, J	$\tau_{4}(G, J)$
5	S	J, L, S	$\tau_{5}(J, L, S)$
6	L	J, L	$\tau_{6}(J, L)$
7			$\tau_{7}(J)$

Step 4: Eliminate H

Step	Variable eliminated	Variables involved	New factor
1	C	D, C	$\tau_{1}(D)$
2	D	G, I, D	$\tau_{2}(G, I)$
3	I	G, I, S	$\tau_{3}(G, S)$
4	G	H, G, J	$\tau_{4}(G, J)$
5	S	J, L, S	$\tau_{5}(J, L, S)$
6	L	J, L	$\tau_{6}(J, L)$
7			$\tau_{7}(J)$

Steps 5,6,7: Eliminate G

Step	Variable eliminated	Variables involved	New factor
1	C	D, C	$\tau_{1}(D)$
2	D	G, I, D	$\tau_{2}(G, I)$
3	I	G, I, S	$\tau_{3}(G, S)$
4	G	H, G, J	$\tau_{4}(G, J)$
5	S	J, L, S	$\tau_{5}(J, L, S)$
6	L	J, L	$\tau_{6}(J, L)$
7			$\tau_{7}(J)$

S

Induced Graph of an elimination ordering

- The induced graph $I_{\Phi, a}$ over factors Φ and ordering a :
- Undirected graph
- X_{i} and X_{j} are connected if they appeared in the same factor in a run of the VE algorithm using a as the ordering

Theorem: Every factor produced during VE is a clique in the induced graph

$$
\begin{gathered}
\tau_{1}(D)=\sum_{C} \phi_{C}(C) \phi_{D}(C, D) \\
\tau_{2}(G, I)=\sum_{D} \phi_{G}(G, I, D) \tau_{1}(D) \\
\tau_{3}(S, G)=\sum_{I} \phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I) \\
\tau_{4}(G, J)=\sum_{H} \phi_{H}(H, G, J) \\
\tau_{5}(L, J)=\sum_{G} \frac{\phi_{L}(L, G) \tau_{3}(S, G) \tau_{4}(G, J)}{\tau_{6}=\sum_{L, S} \phi_{J}(J, L, S) \tau_{5}(L, J)}
\end{gathered}
$$

Induced Graph of an elimination ordering

- The induced graph $I_{\Phi, a}$ over factors Φ and ordering a :
- Undirected graph
- X_{i} and X_{j} are connected if they appeared in the same factor in a run of the VE algorithm using a as the ordering

Theorem: Every maximal clique in the graph is a factor produced during VE Consider a maximal clique some variable is first to be eliminated once a variable is eliminated:

no new neighbor \Rightarrow when eliminated it already had all the clique members as neighbors
\Rightarrow participated in factors with all the other variables
\Rightarrow when multiplied together, we have a factor oven all of them

Complexity based on graphs

- The width of an induced graph is the number of nodes in the largest clique in the graph minus 1
- Minimal induced width of a graph K is $\min _{a}\left(\operatorname{width}\left(I_{K, a}\right)\right)$

- Provides a lower bound on best performance of VE to a model factorizing over K

Finding a good elimination ordering

Theorem: For a graph H, determining whether there exists an elimination ordering for H with induced width K is NPcomplete

Note: This NP-hardness result is distinct from the NPhardness result of inference

- Even given the optimal ordering, inference may still be exponential

Finding a good elimination ordering

- Greedy search using heuristic cost function - At each point, eliminate node with smallest cost
- Possible cost functions:
- min-neighbors: \# neighbors in current graph
- min-weight: weight (\# values) of factor formed
- min-fill: number of new fill edges
- weighted min-fill: total weight of new fill edges (edge weight = product of weights of the 2 nodes)

Finding a good elimination ordering

Finding Elimination Orderings

- Theorem: The induced graph is triangulated
- No loops of length >3 without a "bridge"
-all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
- Can find elimination ordering by finding a low-width triangulation of original graph H_{Φ}

Example: Robot localization

Robot Localization \& Mapping

Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006
Robot Localization \& Mapping

Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006
Eliminate Poses then Landmarks
Induced graph

Example: Robot localization

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006
Eliminate Landmarks then Poses

Example: Robot localization

Min-Fill Elimination

Summary

Variable elimination allows computation of marginals / conditionals

Algorithm is valid for any graphical model
Suffices to show variable elimination for MRFs, since Bayes nets \rightarrow MRFs by moralization

Worst-case complexity is dependent on elimination order, and is exponential in number of variables

Optimal ordering = treewidth, is NP-hard to compute

Pt. 2: Message-passing inference

Variable Elimination

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_{C}(C), \phi_{D}(D, C)$	D, C	$\tau_{1}(D)$
2	I	$\tau_{1}(D), \phi_{G}(G, I, D)$	D, I, G	$\tau_{2}(G, I)$
3	H	$\tau_{2}(G, I), \phi_{I}(I), \phi_{S}(S, I)$	G, I, S	$\tau_{3}(G, S)$
4	G	$\phi_{H}(H, G, J)$	G, J, L, S	$\tau_{4}(G, J)$
5	S	$\tau_{3}(G, S), \tau_{4}(G, J) \phi_{L}(L, G)$	$\tau_{5}(J, L, S)$	
6	L	$\tau_{5}(J, L, S) \phi_{J}(J, L, S)$	J, L	$\tau_{6}(J, L)$
7	$\tau_{6}(J, S)$	$\tau_{7}(J)$		

Understanding Variable Elimination

Cluster Trees

Clusters

Variable Elimination as message passing

Message passing

$$
\begin{array}{ll}
\delta_{12}(D)=\sum_{D} \phi(C) \phi(C, D) & \delta_{35}(G, S)=\sum_{I} \phi(G, I, S) \delta_{35}(G, I) \\
\delta_{23}(G, I)=\sum_{D} \phi(D, I, G) \delta_{12}(D)
\end{array}
$$

Message passing

$$
\begin{aligned}
\delta_{12}(D) & =\sum_{D} \phi(C) \phi(C, D) \\
\delta_{23}(G, I) & =\sum_{D} \phi(D, I, G) \delta_{12}(D) \\
\delta_{35}(G, S) & =\sum_{I} \phi(G, I, S) \delta_{35}(G, I) \\
\delta_{45}(G, J) & =\sum_{H} \phi(G, H, J) \\
\delta_{56}(J, S, L) & =\sum_{G} \delta_{45}(G, J) \delta_{35}(G, S) \phi(L, G)
\end{aligned}
$$

Clique-Tree Message Passing

1. Pick a node to be your root.
2. For each node i, initialize the potential of the node

$$
\psi_{i}=\prod_{i} \phi_{i}
$$

3. Start from a leaf and send message to all neighbors

$$
\delta_{i \rightarrow j}=\sum c_{i}-s_{i, j} \psi_{i} \cdot \prod_{k \in\left(\mathrm{Nb}_{i}-\{j\}\right)} \delta_{k \rightarrow i}
$$

4. Repeat for every node that is ready to transmit a message (i.e., has received messages from every neighbor)

Properties of Cluster Trees

Family Preservation:

For each factor $\phi_{k} \in \Phi$, there exists a cluster C_{i} s.t. Scope $\left[\phi_{k}\right] \subseteq \boldsymbol{C}_{i}$ every factor has a node that can accommodate it

Running Intersection:
For each pair of clusters $C_{\mathrm{i}}, C_{\mathrm{j}}$ and variable $X \in C_{i} \cap C_{j}$, in the unique path between C_{i} and C_{j}, all clusters and sepsets contain X. clusters that include the same variable need to communicate for consistency

Running Intersection

Which clusters need to include X?

