
Probabilistic Graphical Models

Exact Inference

Complexity of VE

Belief Propagation

Summary

• Simple algorithm
• Works for both BNs and MNs
• Factor product and summation steps can be done

in any order, subject to:
– when Z is eliminated, all factors involving Z have been

multiplied in

Daphne Koller

Variable Elimination

• Goal: P(J)
• Eliminate: C,D,I,H,G,L,S

C

ID

G S

L

J
H

!
!,#,$,%,&,',(

𝜙! 𝐶 𝜙#(𝐶, 𝐷)𝜙$ 𝐼 𝜙%(𝐺, 𝐼, 𝐷)𝜙&(𝑆, 𝐼)𝜙'(𝐿, 𝐺)𝜙)(𝐽, 𝐿, 𝑆)𝜙((𝐻, 𝐺, 𝐽)

Complexity

𝜓! 𝑿! =$
"#$

%!

𝜙"

𝜏! 𝑿! ∖ 𝑍 =)
&

𝜓! 𝑿!

Factor product of 𝑚! factors

Marginalization of a
variable

Factor Product

𝑎! 𝑏! 0.5

𝑎! 𝑏" 0.8

𝑎" 𝑏! 0.1

𝑎" 𝑏" 0

𝑎# 𝑏! 0.3

𝑎# 𝑏" 0.9

𝑏! 𝑐! 0.5

𝑏! 𝑐" 0.7

𝑏" 𝑐! 0.1

𝑏" 𝑐" 0.2

𝑎! 𝑏! 𝑐! 0.5 ⋅ 0.5 = 0.25

𝑎! 𝑏! 𝑐" 0.5 ⋅ 0.7 = 0.35

𝑎! 𝑏" 𝑐! 0.8 ⋅ 0.1 = 0.08

𝑎! 𝑏" 𝑐" 0.8 ⋅ 0.2 = 0.16

𝑎" 𝑏! 𝑐! 0.1 ⋅ 0.5 = 0.05

𝑎" 𝑏! 𝑐" 0.1 ⋅ 0.7 = 0.07

𝑎" 𝑏" 𝑐! 0 ⋅ 0.1 = 0

𝑎" 𝑏" 𝑐" 0 ⋅ 0.2 = 0

𝑎# 𝑏! 𝑐! 0.3 ⋅ 0.5 = 0.15

𝑎# 𝑏! 𝑐" 0.3 ⋅ 0.7 = 0.21

𝑎# 𝑏" 𝑐! 0.9 ⋅ 0.1 = 0.09

𝑎# 𝑏" 𝑐" 0.9 ⋅ 0.2 = 0.18

𝜓. 𝑿. =$
/01

20

𝜙/

Cost: (𝑚!−1)×𝑁!

𝑁* 𝑟𝑜𝑤𝑠

𝑁* = |𝑉𝑎𝑙(𝑿𝒌)|

Factor Marginalization

𝑎! 𝑏! 𝑐! 0.5 ⋅ 0.5 = 0.25

𝑎! 𝑏! 𝑐" 0.5 ⋅ 0.7 = 0.35

𝑎! 𝑏" 𝑐! 0.8 ⋅ 0.1 = 0.08

𝑎! 𝑏" 𝑐" 0.8 ⋅ 0.2 = 0.16

𝑎" 𝑏! 𝑐! 0.1 ⋅ 0.5 = 0.05

𝑎" 𝑏! 𝑐" 0.1 ⋅ 0.7 = 0.07

𝑎" 𝑏" 𝑐! 0 ⋅ 0.1 = 0

𝑎" 𝑏" 𝑐" 0 ⋅ 0.2 = 0

𝑎# 𝑏! 𝑐! 0.3 ⋅ 0.5 = 0.15

𝑎# 𝑏! 𝑐" 0.3 ⋅ 0.7 = 0.21

𝑎# 𝑏" 𝑐! 0.9 ⋅ 0.1 = 0.09

𝑎# 𝑏" 𝑐" 0.9 ⋅ 0.2 = 0.18

𝑎! 𝑐! 033

𝑎! 𝑐" 0.51

𝑎" 𝑐! 0.05

𝑎" 𝑐" 0.07

𝑎# 𝑐! 0.24

𝑎# 𝑐" 0.39

𝜙 𝑎,, 𝑐, =!
-

𝜙 𝑎,, 𝑐,, 𝑏

Cost: ∼ 𝑁! additions

Complexity

• Complexity of Variable Elimination
• Start with 𝑚 factors
• m ≤ 𝑛 for Bayesian networks (one for every variable)
• can be larger for Markov networks

• At each elimination step generate 1 factor,
• At most n elimination steps
• Total number of factors: 𝑚⋆ ⩽ 𝑚 + 𝑛

Complexity

• 𝑁 = max 𝑁! = size of the largest factor
• Number of product operations:
• ∑! 𝑚! − 1 ∗ 𝑁! ≤ ∑! 𝑚! − 1 ∗ 𝑁 =

= 𝑁 ∗)
!

(𝑚!−1) ≤ 𝑁 ∗ (𝑚 + 𝑛)

• Number of sum operations: 𝑛 ∗ ∑!𝑁! ≤ 𝑛 ∗ 𝑁

• Linear in 𝑁 and 𝑚∗

Complexity

• 𝑁 = max 𝑁! = size of the largest factor

• Linear in 𝑁 and 𝑚∗

• But!
• 𝑁! = |𝑉𝑎𝑙 𝑿𝒌 | = 𝑂(𝑑)!)
• 𝑑 = max Val 𝑿𝒊 d values in their scope
• 𝑟! = 𝐗! = cardinality of the scope of the 𝑘-th factor

Elimination ordering?

Step
Variable

eliminated
Factors
used

Variables
involved

New
factor

1 𝐶 𝜙$(𝐶), 𝜙%(𝐷, 𝐶) 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝜏! 𝐷 ,𝜙&(𝐺, 𝐼, 𝐷) 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝜏" 𝐺, 𝐼 , 𝜙'(𝐼), 𝜙((𝑆, 𝐼) 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝜙)(𝐻, 𝐺, 𝐽) 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝜏# 𝐺, 𝑆 , 𝜏*(𝐺, 𝐽)𝜙+(𝐿, 𝐺) 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝜏, (𝐽, 𝐿, 𝑆) 𝜙-(𝐽, 𝐿, 𝑆) 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝜏. (𝐽, 𝐿) 𝐽, 𝐿 𝜏/ (𝐽)

Different elimination ordering?

Step
Variable

eliminated

1 𝐺

2 𝐼

3 𝑆

4 𝐿

5 𝐻

6 𝐶

7 𝐷

C

ID

G S

L

J
H

!
!,#,$,%,&,',(

𝜙! 𝐶 𝜙#(𝐶, 𝐷)𝜙$ 𝐼 𝜙%(𝐺, 𝐼, 𝐷)𝜙&(𝑆, 𝐼)𝜙'(𝐿, 𝐺)𝜙)(𝐽, 𝐿, 𝑆)𝜙((𝐻, 𝐺, 𝐽)

Different elimination ordering?

Step
Variable

eliminated
Factors
used

Variables
involved

New
factor

1 𝐺 𝜙&(𝐺, 𝐼, 𝐷), 𝜙+(𝐿, 𝐺), 𝜙)(𝐻, 𝐺, 𝐽) 𝐺, 𝐼, 𝐷, 𝐿, 𝐽, 𝐻 𝜏!(𝐼, 𝐷, 𝐿, 𝐽, 𝐻)

2 𝐼 𝜙'(𝐼), 𝜙((𝑆, 𝐼), 𝜏!(𝐼, 𝐷, 𝐿, 𝑆, 𝐽, 𝐻) 𝑆, 𝐼, 𝐷, 𝐿, 𝐽, 𝐻 𝜏"(𝐷, 𝐿, 𝑆, 𝐽, 𝐻)

3 𝑆 𝜙-(𝐽, 𝐿, 𝑆), 𝜏"(𝐷, 𝐿, 𝑆, 𝐽, 𝐻) 𝐷, 𝐿, 𝑆, 𝐽, 𝐻 𝜏#(𝐷, 𝐿, 𝐽, 𝐻)

4 𝐿 𝜏#(𝐷, 𝐿, 𝐽, 𝐻) 𝐷, 𝐿, 𝐽, 𝐻 𝜏*(𝐷, 𝐽, 𝐻)

5 𝐻 𝜏*(𝐷, 𝐽, 𝐻) 𝐷, 𝐽, 𝐻 𝜏,(𝐷, 𝐽)

6 𝐶 𝜙$(𝐶), 𝜙%(𝐷, 𝐶) 𝐷, 𝐽, 𝐶 𝜏.(𝐷)

7 𝐷 𝜏,(𝐷, 𝐽), 𝜏.(𝐷) 𝐷, 𝐽 𝜏/(𝐽)

Complexity and Elimination Ordering

Eliminate A first:

Eliminate 𝐵" ’s first:

Graphical Perspective

C

ID

G S

L

J
H

!
!,#,$,%,&,',(

𝜙! 𝐶 𝜙#(𝐶, 𝐷)𝜙$ 𝐼 𝜙%(𝐺, 𝐼, 𝐷)𝜙&(𝑆, 𝐼)𝜙'(𝐿, 𝐺)𝜙)(𝐽, 𝐿, 𝑆)𝜙((𝐻, 𝐺, 𝐽)

Step 0: Moralize the Graph

C

ID

G S

L

J
H

!
!,#,$,%,&,',(

𝜙! 𝐶 𝜙#(𝐶, 𝐷)𝜙$ 𝐼 𝜙%(𝐺, 𝐼, 𝐷)𝜙&(𝑆, 𝐼)𝜙'(𝐿, 𝐺)𝜙)(𝐽, 𝐿, 𝑆)𝜙((𝐻, 𝐺, 𝐽)

Step 1: Eliminate C

C

ID

G S

L

J
H

Step
Variable

eliminated
Variables
involved

New
factor

1 𝐶 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝐽, 𝐿 𝜏/ (𝐽)

Step 2: Eliminate D

ID

G S

L

J
H

Step
Variable

eliminated
Variables
involved

New
factor

1 𝐶 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝐽, 𝐿 𝜏/ (𝐽)

Step 3: Eliminate I

𝜏#(𝐺, 𝑆)

I

G S

L

J
H

Step
Variable

eliminated
Variables
involved

New
factor

1 𝐶 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝐽, 𝐿 𝜏/ (𝐽)

Step 4: Eliminate H

𝜏$(𝐺, 𝐽)
G S

L

J
H

Step
Variable

eliminated
Variables
involved

New
factor

1 𝐶 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝐽, 𝐿 𝜏/ (𝐽)

Steps 5,6,7: Eliminate G

𝜏% (𝐽, 𝐿, 𝑆)
𝜏& (𝐽, 𝑆)
𝜏' (𝐽)

G S

L

J

S

L

J

S

J

Step
Variable

eliminated
Variables
involved

New
factor

1 𝐶 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝐺, 𝐼, 𝐷 𝜏"(𝐺, 𝐼)

3 𝐼 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝐻, 𝐺, 𝐽 𝜏*(𝐺, 𝐽)

5 𝐺 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝐽, 𝐿 𝜏/ (𝐽)

Induced Graph of an elimination ordering

• The induced graph 𝐼A,B over factors Φ and ordering 𝑎:
• Undirected graph
• 𝑋/ and 𝑋C are connected if they appeared in the same factor in a run of the

VE algorithm using 𝑎 as the ordering

Theorem: Every factor produced during VE is a clique in the induced graph

𝜏,(𝐷) = ∑!𝜙!(𝐶)𝜙#(𝐶, 𝐷)
𝜏.(𝐺, 𝐼) = ∑#𝜙%(𝐺, 𝐼, 𝐷)𝜏,(𝐷)

𝜏/(𝑆, 𝐺) = ∑$𝜙&(𝑆, 𝐼)𝜙$(𝐼)𝜏.(𝐺, 𝐼)
𝜏0(𝐺, 𝐽) = ∑(𝜙((𝐻, 𝐺, 𝐽)

𝜏1(𝐿, 𝐽) = ∑%𝜙'(𝐿, 𝐺)𝜏/(𝑆, 𝐺)𝜏0(𝐺, 𝐽)
𝜏2 = ∑',&𝜙)(𝐽, 𝐿, 𝑆)𝜏1(𝐿, 𝐽)

Induced Graph of an elimination ordering

• The induced graph 𝐼A,B over factors Φ and ordering 𝑎:
• Undirected graph
• 𝑋/ and 𝑋C are connected if they appeared in the same factor in a

run of the VE algorithm using 𝑎 as the ordering

Theorem: Every maximal clique in the graph is a factor produced during VE
Consider a maximal clique some variable is first to be eliminated
once a variable is eliminated:
no new neighbor ⇒ when eliminated it already had all the clique members as
neighbors

⇒ participated in factors with all the other variables
⇒ when multiplied together, we have a factor oven all of them

C

ID

G S

L

J
H

Complexity based on graphs

• The width of an induced graph is the number of
nodes in the largest clique in the graph minus 1

• Minimal induced width of a graph K is
min
,

𝑤𝑖𝑑𝑡ℎ 𝐼-,,

• Provides a lower bound on best performance of VE
to a model factorizing over K

C

ID

G S

L

J
H

Finding a good elimination ordering

Theorem: For a graph H, determining whether there exists
an elimination ordering for H with induced width K is NP-
complete

Note: This NP-hardness result is distinct from the NP-
hardness result of inference

- Even given the optimal ordering, inference may still be
exponential

Finding a good elimination ordering

• Greedy search using heuristic cost function - At each point,
eliminate node with smallest cost

• Possible cost functions:
• min-neighbors: # neighbors in current graph
• min-weight: weight (# values) of factor formed
• min-fill: number of new fill edges
• weighted min-fill: total weight of new fill edges (edge

weight = product of weights of the 2 nodes)

Finding a good elimination ordering

Finding Elimination Orderings
• Theorem: The induced graph is triangulated

- No loops of length > 3 without a "bridge”
-all cycles of four or more vertices have a chord, which is an edge

that is not part of the cycle but connects two vertices of the cycle.

• Can find elimination ordering by finding a low-width triangulation
of original graph H/

Example: Robot localization

Example: Robot localization

Example: Robot localization

Example: Robot localization

Example: Robot localization

Variable elimination allows computation of marginals /
conditionals

Algorithm is valid for any graphical model

Suffices to show variable elimination for MRFs, since Bayes
nets → MRFs by moralization

Worst-case complexity is dependent on elimination order,
and is exponential in number of variables

Optimal ordering = treewidth, is NP-hard to compute

Summary

Pt. 2: Message-passing inference

Variable Elimination

Step
Variable

eliminated
Factors
used

Variables
involved

New
factor

1 𝐶 𝜙$(𝐶), 𝜙%(𝐷, 𝐶) 𝐷, 𝐶 𝜏!(𝐷)

2 𝐷 𝜏! 𝐷 ,𝜙&(𝐺, 𝐼, 𝐷) 𝐷, 𝐼, 𝐺 𝜏"(𝐺, 𝐼)

3 𝐼 𝜏" 𝐺, 𝐼 , 𝜙'(𝐼), 𝜙((𝑆, 𝐼) 𝐺, 𝐼, 𝑆 𝜏#(𝐺, 𝑆)

4 𝐻 𝜙)(𝐻, 𝐺, 𝐽) 𝐺, 𝐻, 𝑆 𝜏*(𝐺, 𝐽)

5 𝐺 𝜏# 𝐺, 𝑆 , 𝜏*(𝐺, 𝐽)𝜙+(𝐿, 𝐺) 𝐺, 𝐽, 𝐿, 𝑆 𝜏, (𝐽, 𝐿, 𝑆)

6 𝑆 𝜏, (𝐽, 𝐿, 𝑆) 𝜙-(𝐽, 𝐿, 𝑆) 𝐽, 𝐿, 𝑆 𝜏. (𝐽, 𝐿)

7 𝐿 𝜏. (𝐽, 𝑆) 𝐽, 𝐿 𝜏/ (𝐽)

Understanding Variable Elimination

G S

L

J

S

L

J

C

D

ID

G

I

G S

G

J
H

L

J

Cluster Trees

Variable Elimination as message passing

Clusters

SepSets

Message passing

𝛿$0(𝐷) =)
1

𝜙 𝐶 𝜙(𝐶, 𝐷)

𝛿02(𝐺, 𝐼) =)
1

𝜙 𝐷, 𝐼, 𝐺 𝛿$0(𝐷)

𝛿23(𝐺, 𝑆) =)
4

𝜙 𝐺, 𝐼, 𝑆 𝛿23(𝐺, 𝐼)

Message passing

𝛿$0(𝐷) =)
1

𝜙 𝐶 𝜙(𝐶, 𝐷)

𝛿02(𝐺, 𝐼) =)
1

𝜙 𝐷, 𝐼, 𝐺 𝛿$0(𝐷)

𝛿23(𝐺, 𝑆) =)
4

𝜙 𝐺, 𝐼, 𝑆 𝛿23(𝐺, 𝐼)

𝛿53(𝐺, 𝐽) =)
6

𝜙 𝐺,𝐻, 𝐽

𝛿37(𝐽, 𝑆, 𝐿) =)
8

𝛿53 𝐺, 𝐽 𝛿23 𝐺, 𝑆 𝜙(𝐿, 𝐺)

𝛿79(𝐽, 𝐿) =)
:

𝛿37(𝐽, 𝑆, 𝐿)

Clique-Tree Message Passing

1. Pick a node to be your root.
2. For each node 𝑖, initialize the potential of the node

𝜓" =4
"

𝜙"

3. Start from a leaf and send message to all neighbors
𝛿"→) = ∑𝑪!+𝑺!,#𝜓" ⋅ ∏!∈ ./!+{)} 𝛿!→"

4. Repeat for every node that is ready to transmit a
message (i.e., has received messages from every
neighbor)

Properties of Cluster Trees

Family Preservation:

For each factor 𝜙! ∈ Φ, there exists a cluster 𝐶" s.t. Scope 𝜙! ⊆ 𝑪"
every factor has a node that can accommodate it

Running Intersection:

For each pair of clusters 𝐶;, 𝐶< and variable 𝑋 ∈ 𝐶" ∩ 𝐶=, in the
unique path between 𝐶" and 𝐶=, all clusters and sepsets contain 𝑋.

clusters that include the same variable need to communicate
for consistency

Running Intersection

Which clusters need to include X?

