
Probabilistic Graphical Models

Undirected Graphical Models



Probabilistic Graphical Models

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



General Markov Networks
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Log-linear Representation
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Original parameterization Log-linear parameterization

Features 𝑓+ are functions (like factors) without the non-negativity 
assumption. 
Each feature has a single weight. (coefficient, 𝑤+)
Different features can have the same scope.



Log-linear Representation
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One feature for each i,j value
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Feature Example: Text

Problem: Extract entities from a word sequence 
For each word: T, a target variable, Y&, which indicates the entity type of the word. 
Possible outcomes of Y& ∶B-Person, I-Person, B-Location, I-Location, B-Organization, I-Organization, and Other..

𝜙 𝑌' , 𝑌'("
𝜙(𝑌'|𝑋')", , 𝑋' , 𝑋'(")
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Example: Ising Models
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Example: Ising Models
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As T grows, 𝑤$+’s become smaller



Example: Boltzman machine

𝐸 = −'
CD+

𝑤C+𝑠C𝑠+ + −'
C

𝜃C𝑠C

𝑠C∈ {0, 1}

• 𝑤$+ is the connection strength between unit 𝑗 and unit 𝑖.
• 𝑠$ is the state, 𝑠$ ∈ {0,1}, of unit 𝑖.
• 𝜃$ is the bias of unit 𝑖 in the global energy function. ( −𝜃$ is the activation 

threshold for the unit.)

Model for neural activation



Example: Ising Models
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𝑤C,+ will in general be the same for every pair 𝑖, 𝑗



Feature Example: Text

𝜙 𝑌' , 𝑌'("
𝜙(𝑌'|𝑋')", , 𝑋' , 𝑋'(")

OR 
𝑓 𝑌' , 𝑋' = 1{𝑌$ = 𝑃𝑒𝑟𝑠𝑜𝑛, 𝑋$ 𝑖𝑠 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑}

Same energy terms 𝑤𝑘𝑓𝑘(𝑋𝑖, 𝑌𝑖) repeat for all positions i in the sequence
Same energy terms 𝑤𝑚𝑓𝑚(𝑌𝑖, 𝑌𝑖 + 1) also repeat for all positions i



Metric MRFs

Distance function 𝜇: V×V → R3

• 𝜇(𝑣, 𝑣) = 0 for all 𝑣
• Symmetry: 𝜇 𝑣!, 𝑣/ = 𝜇 𝑣/, 𝑣! for all 𝑣!, 𝑣/
• Triangle inequality: 𝜇 𝑣!, 𝑣/ ≤ 𝜇 𝑣!, 𝑣1 + 𝜇 𝑣1, 𝑣/



Metric MRFs



Example Metric MRFs



Example: Image Segmentation



Example: Denoising



Repeated Features

• Need to specify for each feature 𝑓' a  set of scopes
𝑆𝑐𝑜𝑝𝑒𝑠 𝑓'

• For each 𝑫' ∈ 𝑆𝑐𝑜𝑝𝑒𝑠 𝑓' , we have a term 𝑤'𝑓'(𝑫') in 
the energy function

• 𝑤' ∑𝑫𝒌 𝑓 𝑫𝒌

• Parameters and structure are reused within an  MN and 
across different MNs



Pt 2: Inference



Queries on PGMs

Conditional Probability Queries

• Evidence: E = 𝒆
• Query: a subset of variables 𝒀
• Task: compute 𝑃(𝑌|𝑬 = 𝒆)

Applications
• Medical/fault diagnosis
• Pedigree analysis

NP-hardness
Exact Inference is NP hard:
Approximate Inference is also NP hard



Queries on PGMs

Conditional Probability Queries

• Evidence: E = 𝒆
• Query: a subset of variables 𝒀
• Task: compute 𝑃(𝑌|𝑬 = 𝒆)

Applications
• Medical/fault diagnosis
• Pedigree analysis

NP-hardness
Exact Inference is NP hard:
Approximate Inference is also NP hard

Why is the expression ∑ ‾-𝑃( ‾𝑌, ‾𝑊, ‾𝑒) hard to compute in 
general?

It may be intractable to sum over all the different values 
that ‾𝑊 can take.

The summation over all values of ‾𝑊 is exponential. If ‾𝑊 has 
100 binary variables, then summing will take 2".. operations. 

𝑃( ‾𝑌, ‾𝑊, ‾𝑒) is always easy to compute because it is just the 
product of all CPDs.



Probabilistic inference in practice
NP-hardness simply says that there exist difficult inference problems

Real-world inference problems are not necessarily as hard as these worst-case  
instances

The reduction from SAT created a very complex Bayesian network:

QnQ3 Q4Q1 Q2

C1

A1 XAm–2A2

Cm

. . .

C2 C3 . . . Cm– 1

Some graphs are easy to do inference in! For example, inference in hidden  
Markov models

X1 X2 X3 X4 X5 X6

and other tree-structured graphs can be performed in linear time

Y1 Y2 Y3 Y4 Y5 Y6

Lecture 4, February 21, 2013Slides by David Sontag



Sum-product Inference
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Compute 𝑃(𝐽)
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Sum-product Inference for MNs

6𝑃 𝐷 = '
[,\,]

𝜙^ 𝐴, 𝐵 𝜙_ 𝐵, 𝐶 𝜙` 𝐶, 𝐷 𝜙a(𝐷, 𝐴)

What about the 
normalization constant?



Introducing Evidence

𝑃 𝒀 ∣ 𝑬 = 𝒆 =
𝑃 𝒀 𝑬 = 𝒆
𝑃 𝑬 = 𝒆

𝑃 𝒀 𝑬 = 𝒆 ='
𝑾

𝑃(𝒀,𝑾,𝑬 = 𝒆)

𝑾 = 𝑽\𝑬 ∪ 𝒀

Use the reduced factors:
Example: A=0



Sum-product Inference
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𝜙4 𝐶 𝜙5(𝐶, 𝐷)𝜙6 𝐼 𝜙7(𝐺, 𝐼, 𝐷)
𝜙8(𝑆, 𝐼)𝜙9(𝐿, 𝐺)𝜙:(𝐽, 𝐿, 𝑆)𝜙;(𝐻, 𝐺, 𝐽)

Compute 𝑃(𝐽, 𝑖, ℎ)

R
/,0,1,2,3,4,5

𝜙/ 𝐶 𝜙0(𝐶, 𝐷)𝜙1 𝐼 𝜙2(𝐺, 𝐼, 𝐷)𝜙3(𝑆, 𝐼)𝜙4(𝐿, 𝐺)𝜙6(𝐽, 𝐿, 𝑆)𝜙5(𝐻, 𝐺, 𝐽)



Algorithms: Conditional Probability

Push summations into factor product 
- Variable elimination (dynamic programming)
Message passing over a graph 
- Belief propagation (exact)
- Variational approximations
- Random sampling instantiations
- Markov chain Monte Carlo (MCMC)
- Importance sampling



Inference in Chains

• We want to  compute p(D)
• 𝑝(𝐷) is a set of values, {𝑝(𝐷 = 𝑑 ), 𝑑 ∈ 𝑉𝑎𝑙(𝐷)}.
• Algorithm  computes sets of values at a time – an entire distribution
By the chain rule and conditional independence, the joint distribution  
factors as

𝑃(𝐴,𝐵, 𝐶, 𝐷) = 𝑃 𝐴 𝑃(𝐵 | 𝐴)𝑃(𝐶 𝐵 𝑃(𝐷 | 𝐶 )

In order to compute p(D), we have to marginalize over A, B, C :

𝑃(𝐴, 𝐵, 𝐶, 𝐷) = *
7,8,/

𝑃 𝐴 𝑃(𝐵 | 𝐴)𝑃(𝐶 𝐵 𝑃(𝐷 | 𝐶)

A B C D



Let’s be a bit more explicit...

There is structure to the summation, e.g., repeated P(a1)P(b1|a1)+P(a2)P(b1|a2)

Let’s modify the computation to first compute

P(a1)P(b1|a1) +P(a2)P(b1|a2)

Lecture 4, February 21, 2013



Let’s be a bit more explicit...

Let’s modify the computation to first compute

P(a1)P(b1|a1) +P(a2)P(b1|a2)

and
P(a1)P(b2|a1) +P(a2)P(b2|a2)

Then, we get

We define τ1 : Val(B)→ R, τ1(bi) =P(a1)P(bi|a1) +P(a2)P(bi|a2)

Lecture 4, February 21, 2013



We now have

We can once more reverse the order of the product and the sum and get

There are still other repeated computations!
s

Lecture 4, February 21, 2013
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Let’s be a bit more explicit...



Let’s be a bit more explicit...

We define τ2 : Val(C)→ R, with

τ2(c1)  = τ1(b1)P(c1|b1) + τ1(b2)P(c1|b2)
τ2(c2)  = τ1(b1)P(c2|b1) + τ1(b2)P(c2|b2)

Now we can compute the marginal p(D) as

Lecture 4, February 21, 2013



What Did We Do?

𝑃(𝐷) = ∑'∑(∑)𝑃(𝐴)𝑃(𝐵 ∣ 𝐴)𝑃(𝐶 ∣ 𝐵)𝑃(𝐷 ∣ 𝐶)

Push in the summation of A

𝑃 𝐷 = ∑'∑(𝑃(𝐶 ∣ 𝐵)𝑃(𝐷 ∣ 𝐶) ∑)𝑃(𝐴)𝑃(𝐵 ∣ 𝐴)

Push in the summation of B

𝑃 𝐷 = ∑'𝑃(𝐷 ∣ 𝐶)∑(𝑃(𝐶 ∣ 𝐵) P(B)

Push in the summation of C

𝑃 𝐷 = ∑'𝑃 𝐷 𝐶 P(C)



Rule for Sum-Product VE

If 𝑋 ∉ 𝑆𝑐𝑜𝑝𝑒 𝜙% , then

6
*

𝜙% ⋅ 𝜙& = 𝜙% ⋅6
*

𝜙&



Elimination In Chains: MNs
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Elimination In Chains: MNs



Variable Elimination

• Goal: P(J)
• Eliminate: C,D,I,H,G,S,L

C

ID

G S

L

J
H

*
/,0,1,2,3,4,5

𝜙/ 𝐶 𝜙0(𝐶, 𝐷)𝜙1 𝐼 𝜙2(𝐺, 𝐼, 𝐷)𝜙3(𝑆, 𝐼)𝜙4(𝐿, 𝐺)𝜙6(𝐽, 𝐿, 𝑆)𝜙5(𝐻, 𝐺, 𝐽)



Variable Elimination with evidence

• Goal: P(J, I =i, H=h)
• Eliminate: C,D, G,S,L

C

ID

G S

L

J
H

*
/,0,1,2,3,4,5

𝜙/ 𝐶 𝜙0(𝐶, 𝐷)𝜙1 𝐼 𝜙2(𝐺, 𝐼, 𝐷)𝜙3(𝑆, 𝐼)𝜙4(𝐿, 𝐺)𝜙6(𝐽, 𝐿, 𝑆)𝜙5(𝐻, 𝐺, 𝐽)



Variable Elimination in MNs

BD

C

AA ,B ,C

• Goal: P(D)
• Eliminate: A,B,C
å f1 ( A , B )f 2 ( B , C )f 3 (C , D )f 4 ( A , D )

å f 2 ( B , C )f 3 (C , D )å f1 ( A , B )f 4 ( A , D )
B , C A

B ,C
å f 2 ( B , C )f 3 (C , D )t 1 ( B , D )

At the end of elimination get t3(D)

Daphne Koller



• Reduce all factors by evidence
–Get a set of factorsΦ

• For each non-query variable Z
–Eliminate-Var Z from Φ:

• Multiply all remaining factors
• Renormalize to get distribution



Summary

• Simple algorithm
• Works for both BNs and MNs
• Factor product and summation steps can  be done 

in any order, subject to:
– when Z is eliminated, all factors involving Z  have been 

multiplied in

Daphne Koller


