Probabilistic Graphical Models

Undirected Graphical Models

Probabilistic Graphical Models

Directed graphical models

- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

General Markov Networks

$$
P_{\phi}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z_{\phi}} \prod_{i} \phi_{i}\left(\boldsymbol{D}_{\mathrm{i}}\right)
$$

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{1}	c^{2}	0.35
a^{1}	b^{2}	c^{1}	0.08
a^{1}	b^{2}	c^{2}	0.16
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{1}	c^{2}	0.07
a^{2}	b^{2}	c^{1}	0
a^{2}	b^{2}	c^{2}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{1}	c^{2}	0.21
a^{3}	b^{2}	c^{1}	0.09
a^{3}	b^{2}	c^{2}	0.18

Log-linear Representation

$$
\begin{gathered}
\tilde{P}=\prod_{i} \phi_{i}\left(\boldsymbol{D}_{i}\right) \quad \tilde{P}=\exp \left(-\sum_{j} w_{j} f_{j}\left(\boldsymbol{D}_{j}\right)\right. \\
\text { Original parameterization } \\
\text { Log-linear parameterization }
\end{gathered}
$$

Features $\left(f_{j}\right)$ are functions (like factors) without the non-negativity assumption.
Each feature has a single weight. (coefficient, w_{j})
Different features can have the same scope.

Log-linear Representation

$$
\phi\left(X_{1}, X_{2}\right)=\left(\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right) \quad f_{12}^{i j}=I\left(X_{1}=i \text { and } X_{2}=j\right)
$$

$$
\begin{aligned}
& \phi\left(X_{2}, X_{3}\right)=\exp \left(-\sum_{k l} w_{k l} f_{12}^{k l}\left(X_{1}, X_{2}\right)\right) \\
& w_{k l}=-\log \left(a_{k l}\right)
\end{aligned}
$$

Feature Example: Text

Problem: Extract entities from a word sequence

For each word: T , a target variable, Y_{t}, which indicates the entity type of the word.
Possible outcomes of $Y_{t}: B-P e r s o n$, I-Person, B-Location, I-Location, B-Organization, I-Organization, and Other..

Feature Example: Text

Problem: Extract entities from a word sequence
For each word: T , a target variable, Y_{t}, which indicates the entity type of the word.
Possible outcomes of $Y_{t}: B-P e r s o n$, I-Person, B-Location, I-Location, B-Organization, I-Organization, and Other..

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i} \\
x_{i} \in\{-1,1\} \\
f_{i, j}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j}
\end{gathered}
$$

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i} \\
x_{i} \in\{-1,1\} \\
f_{i, j}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j}
\end{gathered}
$$

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<} \\
x_{i} \in\left\{\begin{array}{ll}
& \\
f_{i, j}\left(X_{i}, X_{j}\right. &
\end{array}\right)
\end{gathered}
$$

Example: Boltzman machine

$$
\begin{gathered}
E=-\sum_{i<j} w_{i j} s_{i} s_{j}+-\sum_{i} \theta_{i} s_{i} \\
s_{i} \in\{0,1\}
\end{gathered}
$$

- $w_{i j}$ is the connection strength between unit j and unit i.
- s_{i} is the state, $s_{i} \in\{0,1\}$, of unit i.
- θ_{i} is the bias of unit i in the global energy function. ($-\theta_{i}$ is the activation threshold for the unit.)
Model for neural activation

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i} \\
x_{i} \in\{-1,1\} \\
f_{i, j}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j} \\
P(\mathrm{X}) \propto e^{-\frac{1}{T} E(\mathrm{X})} \\
w_{i, j} \text { will in general be the same for every pair } i, j
\end{gathered}
$$

Feature Example: Text

Same energy terms $w_{k} f_{k}\left(X_{i}, Y_{i}\right)$ repeat for all positions in the sequence Same energy terms $w_{m} f_{m}\left(Y_{i}, Y_{i+1}\right)$ also repeat for all positions i

Metric MRFs

- All X_{i} take values in label space \underline{V}

want X_{i} and X_{j} to

take "similar" values
Distance function $\mu: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{R}^{+}$

- $\mu(v, v)=0$ for all v
- Symmetry: $\mu\left(v_{1}, v_{2}\right)=\mu\left(v_{2}, v_{1}\right)$ for all v_{1}, v_{2}
- Triangle inequality: $\mu\left(v_{1}, v_{2}\right) \leq \mu\left(v_{1}, v_{3}\right)+\mu\left(v_{3}, v_{2}\right)$
- All X_{i} take values in label space V

want X_{i} and X_{j} to take "similar" values
- Distance function $\mu: V \times \mathrm{V} \rightarrow \mathrm{R}$

Example Metric MRFs

$$
\mu\left(v_{k}, v_{l}\right)= \begin{cases}0 & v_{k}=v_{l} \\ 1 & \text { otherwise }\end{cases}
$$

$$
\left(\begin{array}{llll}
Q & 1 & 1 & 1 \\
1 & Q & 1 & 1 \\
1 & 1 & Q & 1 \\
1 & 1 & 1 & Q
\end{array}\right)
$$

Example: Image Segmentation

$$
\mu\left(v_{\mathrm{k}}, v_{\mathrm{l}}\right)=\left\{\begin{array}{ll}
0 & \mathrm{v}_{\mathrm{k}}=\mathrm{v}_{\mathrm{l}} \\
1 & \text { otherwise }
\end{array}\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\right.
$$

Example: Denoising

Similar idea for stereo reconstruction

Repeated Features

- Need to specify for each feature f_{k} a set of scopes Scopes $\left[f_{k}\right]$
- For each $\boldsymbol{D}_{k} \in \operatorname{Scopes}\left[f_{k}\right]$, we have a term $w_{k} f_{k}\left(\boldsymbol{D}_{k}\right)$ in the energy function
- $w_{k} \sum_{\boldsymbol{D}_{\boldsymbol{k}}} f\left(\boldsymbol{D}_{\boldsymbol{k}}\right)$
- Parameters and structure are reused within an MN and across different MNs

Pt 2: Inference

Queries on PGMs

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of variables \boldsymbol{Y}
- Task: compute $P(Y \mid \boldsymbol{E}=\boldsymbol{e})$

Applications

- Medical/fault diagnosis
- Pedigree analysis

NP-hardness

Exact Inference is NP hard:
Approximate Inference is also NP hard

Queries on PGMs

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of variables \boldsymbol{Y}
- Task: compute $P(Y \mid \boldsymbol{E}=\boldsymbol{e})$

Applications

- Medical/fault diagnosis
- Pedigree analysis

NP-hardness
Exact Inference is NP hard:
Approximate Inference is also NP hard

Why is the expression $\sum_{\bar{W}} P(\bar{Y}, \bar{W}, \bar{e})$ hard to compute in general?

It may be intractable to sum over all the different values that \bar{W} can take.

The summation over all values of \bar{W} is exponential. If \bar{W} has 100 binary variables, then summing will take 2^{100} operations.
$P(\bar{Y}, \bar{W}, \bar{e})$ is always easy to compute because it is just the product of all CPDs.

Probabilistic inference in practice

- NP-hardness simply says that there exist difficult inference problems
- Real-world inference problems are not necessarily as hard as these worst-case instances
- The reduction from SAT created a very complex Bayesian network:

- Some graphs are easy to do inference in! For example, inference in hidden Markov models

and other tree-structured graphs can be performed in linear time
Slides by David Sontag

Sum-product Inference

$$
\begin{gathered}
\phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \\
\phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)
\end{gathered}
$$

Compute $P(J)$

Sum-product Inference

$$
\begin{gathered}
\phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \\
\phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)
\end{gathered}
$$

Compute $P(J)$

$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Sum-product Inference for MNs

$$
\tilde{P}(D)=\sum_{A, B, C} \phi_{1}(A, B) \phi_{2}(B, C) \phi_{3}(C, D) \phi_{4}(D, A)
$$

What about the normalization constant?

Introducing Evidence

$$
\begin{gathered}
P(\boldsymbol{Y} \mid \boldsymbol{E}=\boldsymbol{e})=\frac{P(\boldsymbol{Y}, \boldsymbol{E}=\boldsymbol{e})}{P(\boldsymbol{E}=\boldsymbol{e})} \\
P(\boldsymbol{Y}, \boldsymbol{E}=\boldsymbol{e})=\sum_{\boldsymbol{W}} P(\boldsymbol{Y}, \boldsymbol{W}, \boldsymbol{E}=\boldsymbol{e}) \\
\boldsymbol{W}=\boldsymbol{V} \backslash \boldsymbol{E} \cup \boldsymbol{Y}
\end{gathered}
$$

Use the reduced factors:
Example: A=0

Sum-product Inference

$$
\begin{gathered}
\phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \\
\phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)
\end{gathered}
$$

Compute $P(J, i, h)$

$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Algorithms: Conditional Probability

Push summations into factor product

- Variable elimination (dynamic programming)

Message passing over a graph

- Belief propagation (exact)
- Variational approximations
- Random sampling instantiations
- Markov chain Monte Carlo (MCMC)
- Importance sampling

Inference in Chains

- We want to compute $p(D)$
- $p(D)$ is a set of values, $\{p(D=d), d \in \operatorname{Val}(D)\}$.
- Algorithm computes sets of values at a time - an entire distribution By the chain rule and conditional independence, the joint distribution factors as

$$
P(A, B, C, D)=P(A) P(B \mid A) P(C \mid B) P(D \mid C)
$$

In order to compute $p(D)$, we have to marginalize over A, B, C :

$$
P(A, B, C, D)=\sum_{A, B, C} P(A) P(B \mid A) P(C \mid B) P(D \mid C)
$$

Let's be a bit more explicit...

$P\left(a^{1}\right)$	$P\left(b^{1}\right.$	$\left.a^{1}\right)$	$P\left(c^{1} \mid b^{1}\right)$	$P\left(d^{1}\right.$
$P\left(a^{2}\right)$	$P\left(b^{1}\right.$	a^{2})	$P\left(c^{1} \mid b^{1}\right)$	$P\left(d^{1}\right.$
$P\left(a^{1}\right)$	$P\left(b^{2}\right.$	$\left.a^{1}\right)$	$P\left(c^{1} \mid b^{2}\right)$	$P\left(d^{1}\right.$
$P\left(a^{2}\right)$	$P\left(b^{2}\right.$	a^{2})	$P\left(c^{1} \mid b^{2}\right)$	$P\left(d^{1}\right.$
$P\left(a^{1}\right)$	$P\left(b^{1}\right.$	$\left.a^{1}\right)$	$P\left(c^{2} \mid b^{1}\right)$	$P\left(d^{1}\right.$
$P\left(a^{2}\right)$	$P\left(b^{1}\right.$	a^{2})	$P\left(c^{2} \mid b^{1}\right)$	P
+ P(a^{1})	$P\left(b^{2}\right.$	a^{1})	$P\left(c^{2} \mid b^{2}\right)$	$P\left(d^{1}\right.$
$P\left(a^{2}\right)$	$P\left(b^{2}\right.$	$\left.a^{2}\right)$	$P\left(c^{2} \mid b^{2}\right)$	$P\left(d^{1}\right.$
$P\left(a^{1}\right)$	$P\left(b^{1}\right.$	a^{1}	$P\left(c^{1} \mid b^{1}\right)$	(
$+P\left(a^{2}\right)$	$P\left(b^{1}\right.$	a^{2})	$P\left(c^{1} \mid b^{1}\right)$	$P\left(d^{2}\right.$
$+P\left(a^{1}\right)$	$P\left(b^{2}\right.$	$\left.a^{1}\right)$	$P\left(c^{1} \mid b^{2}\right)$	$P\left(d^{2}\right.$
$+P\left(a^{2}\right)$	$P\left(b^{2}\right.$	a^{2})	$P\left(c^{1} \mid b^{2}\right)$	$P\left(d^{2}\right.$
$+P\left(a^{1}\right)$	$P\left(b^{1}\right.$	$\left.a^{1}\right)$	$P\left(c^{2} \mid b^{1}\right)$	$P\left(d^{2}\right.$
$+P\left(a^{2}\right)$	$P\left(b^{1}\right.$	a^{2})	$P\left(c^{2} \mid b^{1}\right)$	$P\left(d^{2}\right.$
$+P\left(a^{1}\right)$	$P\left(b^{2}\right.$	a^{1})	$P\left(c^{2} \mid b^{2}\right)$	$P\left(d^{2}\right.$
$P\left(a^{2}\right)$	$P\left(b^{2}\right.$	$\left.a^{2}\right)$	$P\left(c^{2} \mid b^{2}\right)$	$P\left(d^{2}\right.$

- There is structure to the summation, e.g., repeated $P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)$
- Let's modify the computation to first compute

$$
P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)
$$

Let's be a bit more explicit...

- Let's modify the computation to first compute

$$
P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)
$$

and

$$
P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)
$$

- Then, we get

$$
\begin{array}{rlll}
& \left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{1} \mid c^{1}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{2}| | a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{2}\right) & P\left(\left.d^{1}\right|^{1}\right) \\
+\left(\left(P\left(a^{1}\right) P\left(b^{1} \mid a a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right)\right. & P\left(c^{2} \mid b^{1}\right) & P\left(d^{1} c^{2}\right) \\
+\left(\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right)\right. & P\left(c^{2} \mid b^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
+ & \left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{2} \mid c^{1}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{1} \mid b^{2}\right) & P\left(d^{2} \mid c^{1}\right) \\
\left.+\left(P\left(a^{1}\right) P\left(b^{1} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{1} \mid a^{2}\right)\right)\right) & P\left(c^{2} \mid b^{1}\right. & P\left(d^{2} \mid c^{2}\right) \\
+\left(P\left(a^{1}\right) P\left(b^{2} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{2} \mid a^{2}\right)\right) & P\left(c^{2} \mid b^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- We define $T_{1}: \operatorname{Val}(B) \rightarrow R, T_{1}\left(b^{i}\right)=P\left(a^{1}\right) P\left(b^{i} \mid a^{1}\right)+P\left(a^{2}\right) P\left(b^{i} \mid a^{2}\right)$

Let's be a bit more explicit...

- We now have

$$
\begin{array}{rll}
\tau_{1}\left(b^{1}\right) & P\left(c^{1} \mid b^{1}\right) & P\left(d^{1} \mid c^{1}\right) \\
+\tau_{1}\left(b^{2}\right) & P\left(c^{1} \mid b^{2}\right) & P\left(d^{1} \mid c^{1}\right) \\
\left.+\tau_{1} b^{1}\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{1} c^{2}\right) \\
+\tau_{1}\left(b^{2}\right) & P\left(c^{2} \mid b^{2}\right) & P\left(d^{1} \mid c^{2}\right) \\
& \tau_{1}\left(b^{1}\right) & P\left(c^{1} \mid b^{1}\right) \\
+\tau_{1}\left(b^{2}\right) & P\left(d^{2}\left|c^{1}\right| b^{2}\right) & \left.P\left(d^{2}\right) c^{1}\right) \\
+\tau_{1}\left(b^{1}\right) & P\left(c^{2} \mid b^{1}\right) & P\left(d^{2} \mid c^{2}\right) \\
+\tau_{1}\left(b^{2}\right) & P\left(c^{2} \mid b^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- We can once more reverse the order of the product and the sum and get

$$
\begin{array}{rll}
\left(\tau_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right)\right) & P\left(d^{1} \mid c^{1}\right) \\
+\left(\tau_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)\right) & P\left(d^{1} \mid c^{2}\right) \\
& \left(\tau_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right)\right) & P\left(d^{2} \mid c^{1}\right) \\
+\left(\tau_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+\tau_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)\right) & P\left(d^{2} \mid c^{2}\right)
\end{array}
$$

- There are still other repeated computations!

Let's be a bit more explicit...

- We define $T_{2}: \operatorname{Val}(C) \rightarrow R$, with

$$
\begin{aligned}
& T_{2}\left(c^{1}\right)=T_{1}\left(b^{1}\right) P\left(c^{1} \mid b^{1}\right)+T_{1}\left(b^{2}\right) P\left(c^{1} \mid b^{2}\right) \\
& T_{2}\left(c^{2}\right)=T_{1}\left(b^{1}\right) P\left(c^{2} \mid b^{1}\right)+T_{1}\left(b^{2}\right) P\left(c^{2} \mid b^{2}\right)
\end{aligned}
$$

- Now we can compute the marginal $p(D)$ as

$$
\begin{aligned}
\tau_{2}\left(c^{1}\right) & P\left(d^{1} \mid c^{1}\right) \\
+ & \tau_{2}\left(c^{2}\right) \\
& P\left(d^{1} \mid c^{2}\right) \\
& \tau_{2}\left(c^{1}\right) \\
+ & P\left(d^{2} \mid c^{1}\right) \\
+\tau_{2}\left(c^{2}\right) & P\left(d^{2} \mid c^{2}\right)
\end{aligned}
$$

What Did We Do?

$$
P(D)=\sum_{C} \sum_{B} \sum_{A} P(A) P(B \mid A) P(C \mid B) P(D \mid C)
$$

Push in the summation of A

$$
P(D)=\sum_{C} \sum_{B} P(C \mid B) P(D \mid C) \sum_{A} P(A) P(B \mid A)
$$

Push in the summation of B

$$
P(D)=\sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \mathrm{P}(\mathrm{~B})
$$

Push in the summation of C

$$
P(D)=\sum_{C} P(D \mid C) \mathrm{P}(\mathrm{C})
$$

Rule for Sum-Product VE

If $X \notin \operatorname{Scope}\left[\phi_{1}\right]$, then

$$
\sum_{X}\left(\phi_{1} \cdot \phi_{2}\right)=\phi_{1} \cdot \sum_{X} \phi_{2}
$$

Elimination In Chains: MNs

Elimination In Chains: MNs

Elimination In Chains: MNs

Variable Elimination

- Goal: $\quad P(J)$
- Eliminate: C, D, I, H, G, S, L
$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Variable Elimination with evidence

- Goal: $\quad P(J, I=i, H=h)$
- Eliminate: C, D, G, S, L
$\sum_{C, D, I, G, S, L, H} \phi_{C}(C) \phi_{D}(C, D) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$

Variable Elimination in MNs

- Goal: $P(D)$
- Eliminate: A, B, C

$=\tilde{p}(D)$
At the end of elimination get $\tau_{3}(D) \propto P(0)$
renormalize

- Reduce all factors by evidence
- Get a set of factors Φ
- For each non-query variable Z
-Eliminate-Var Z from Φ :

$$
\begin{aligned}
& \Phi^{\prime}=\left\{\phi_{i} \in \Phi: Z \in \operatorname{Scope}\left[\phi_{i}\right]\right\} \\
& \psi=\prod_{\phi_{i} \in \Phi^{\prime}} \phi_{i} \\
& \tau=\sum_{Z} \psi \\
& \Phi:=\Phi-\Phi^{\prime} \cup\{\tau\}
\end{aligned}
$$

- Multiply all remaining factors
- Renormalize to get distribution

Summary

- Simple algorithm
- Works for both BNs and MNs
- Factor product and summation steps can be done in any order, subject to:
- when Z is eliminated, all factors involving Z have been multiplied in

