Probabilistic Graphical Models

Undirected Graphical Models

Probabilistic Graphical Models

Directed graphical models

- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

General Markov Networks

$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}$$
$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \prod_i \phi_i(\boldsymbol{D}_i)$$
$$Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

$$P_{\phi}(X_1, \dots, X_n) = \frac{1}{Z_{\phi}} \prod_i \phi_i(\boldsymbol{D}_i)$$

<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ¹	0.25
a ¹	<i>b</i> ¹	<i>c</i> ²	0.35
<i>a</i> ¹	<i>b</i> ²	C ¹	0.08
a ¹	<i>b</i> ²	<i>c</i> ²	0.16
a ²	<i>b</i> ¹	C ¹	0.05
a ²	<i>b</i> ¹	<i>c</i> ²	0.07
a ²	<i>b</i> ²	C ¹	0
a ²	<i>b</i> ²	<i>c</i> ²	0
a ³	<i>b</i> ¹	C ¹	0.15
<i>a</i> ³	<i>b</i> ¹	<i>c</i> ²	0.21
a^3	b^2	c^1	0.09

Log-linear Representation

$$\tilde{P} = \prod_{i} \phi_{i}(\boldsymbol{D}_{i}) \qquad \tilde{P} = \exp\left(-\sum_{j} w_{j} f_{j}(\boldsymbol{D}_{j})\right)$$

Original parameterization

Log-linear parameterization

Features (f_j) are functions (like factors) without the non-negativity assumption. Each feature has a single weight. (coefficient, w_j) Different features can have the same scope.

Log-linear Representation

$$\phi(X_1, X_2) = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}$$
 $f_{12}^{ij} = I(X_1 = i \text{ and } X_2 = j)$

One feature for each i, j value

$$\phi(X_2, X_3) = \exp\left(-\sum_{kl} w_{kl} f_{12}^{kl}(X_1, X_2)\right)$$
$$w_{kl} = -\log(a_{kl})$$

Feature Example: Text

KEY

B-PERBegin person nameI-LOCWithin location nameI-PERWithin person nameOTHNot an entitiyB-LOCBegin location nameOTHNot an entitiy

Problem: Extract entities from a word sequence

For each word: T, a target variable, Y_t , which indicates the entity type of the word.

Possible outcomes of Y_t :B-Person, I-Person, B-Location, I-Location, B-Organization, I-Organization, and Other..

Feature Example: Text

Problem: Extract entities from a word sequence

For each word: T, a target variable, Y_t , which indicates the entity type of the word.

Possible outcomes of Y_t :B-Person, I-Person, B-Location, I-Location, B-Organization, I-Organization, and Other.

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i$$
$$x_i \in \{-1, 1\}$$
$$f_{i,j}(X_i, X_j) = X_i \cdot X_j$$

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i$$
$$x_i \in \{-1, 1\}$$
$$f_{i,j}(X_i, X_j) = X_i \cdot X_j$$
$$P(\mathbf{X}) \propto e^{-\frac{1}{T}E(\mathbf{X})}$$

As T grows, w_{ij} 's become smaller

Example: Boltzman machine

$$E = -\sum_{i < j} w_{ij} s_i s_j + -\sum_i \theta_i s_i$$
$$s_i \in \{0, 1\}$$

- w_{ij} is the connection strength between unit *j* and unit *i*.
- s_i is the state, $s_i \in \{0,1\}$, of unit *i*.
- θ_i is the bias of unit *i* in the global energy function. ($-\theta_i$ is the activation threshold for the unit.)

Model for neural activation

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i$$
$$x_i \in \{-1, 1\}$$
$$f_{i,j}(X_i, X_j) = X_i \cdot X_j$$
$$P(\mathbf{X}) \propto e^{-\frac{1}{T}E(\mathbf{X})}$$

 $w_{i,j}$ will in general be the same for every pair i, j

Feature Example: Text

Same energy terms $w_k f_k(X_i, Y_i)$ repeat for all positions i in the sequence Same energy terms $w_m f_m(Y_i, Y_{i+1})$ also repeat for all positions i

Metric MRFs

• All X_i take values in label space V want X_i and X_j to take "similar" values

Distance function $\mu: V \times V \rightarrow R^+$

- $\mu(v, v) = 0$ for all v
- Symmetry: $\mu(v_1, v_2) = \mu(v_2, v_1)$ for all v_1, v_2
- Triangle inequality: $\mu(v_1, v_2) \le \mu(v_1, v_3) + \mu(v_3, v_2)$

Metric MRFs

All X_i take values in label space V

-Xi and X_j to take "similar" values

• Distance function $\mu : V \times V \rightarrow R$

Example Metric MRFs

Example: Image Segmentation

Example: Denoising

Repeated Features

- Need to specify for each feature f_k a set of scopes $Scopes[f_k]$
- For each $D_k \in Scopes[f_k]$, we have a term $w_k f_k(D_k)$ in the energy function

• $w_k \sum_{D_k} f(D_k)$

Parameters and structure are reused within an MN and across different MNs

Pt 2: Inference

Queries on PGMs

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of variables *Y*
- Task: compute P(Y|E = e)

Applications

- Medical/fault diagnosis
- Pedigree analysis

NP-hardness Exact Inference is NP hard: Approximate Inference is also NP hard

Queries on PGMs

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of variables **Y**
- Task: compute P(Y|E = e)

Applications

- Medical/fault diagnosis
- Pedigree analysis

NP-hardness Exact Inference is NP hard: Approximate Inference is also NP hard Why is the expression $\sum_{\bar{W}} P(\bar{Y}, \bar{W}, \bar{e})$ hard to compute in general?

It may be intractable to sum over all the different values that \overline{W} can take.

The summation over all values of \overline{W} is exponential. If \overline{W} has 100 binary variables, then summing will take 2^{100} operations.

 $P(\bar{Y}, \bar{W}, \bar{e})$ is always easy to compute because it is just the product of all CPDs.

Probabilistic inference in practice

- NP-hardness simply says that there exist difficult inference problems
- Real-world inference problems are not necessarily as hard as these worst-case instances
- The reduction from SAT created a very complex Bayesian network:

Some graphs are easy to do inference in! For example, inference in hidden Markov models

and other tree-structured graphs can be performed in linear time

Slides by David Sontag

Sum-product Inference

 $\phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)$ $\phi_S(S,I)\phi_L(L,G)\phi_I(J,L,S)\phi_H(H,G,J)$

Compute P(J)

Sum-product Inference

 $\phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)$ $\phi_{S}(S,I)\phi_{L}(L,G)\phi_{I}(J,L,S)\phi_{H}(H,G,J)$

Compute P(J)

Sum-product Inference for MNs

$$\tilde{P}(D) = \sum_{A,B,C} \phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(D,A)$$

What about the normalization constant?

Introducing Evidence

$$P(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \frac{P(\mathbf{Y}, \mathbf{E} = \mathbf{e})}{P(\mathbf{E} = \mathbf{e})}$$
$$P(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{W}} P(\mathbf{Y}, \mathbf{W}, \mathbf{E} = \mathbf{e})$$

 $W = V \setminus E \cup Y$

Use the reduced factors: Example: A=0

Sum-product Inference

 $\phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)$ $\phi_{S}(S,I)\phi_{L}(L,G)\phi_{I}(J,L,S)\phi_{H}(H,G,J)$

Compute P(J, i, h)

Push summations into factor product

- Variable elimination (dynamic programming)

Message passing over a graph

- Belief propagation (exact)
- Variational approximations
- Random sampling instantiations
- Markov chain Monte Carlo (MCMC)
- Importance sampling

Inference in Chains

- We want to compute p(D)
- p(D) is a **set** of values, $\{p(D = d), d \in Val(D)\}$.
- Algorithm computes sets of values at a time an entire distribution
 By the chain rule and conditional independence, the joint distribution
 factors as

$$P(A, B, C, D) = P(A)P(B \mid A)P(C \mid B)P(D \mid C)$$

In order to compute p(D), we have to marginalize over A, B, C:

$$P(A, B, C, D) = \sum_{A,B,C} P(A)P(B \mid A)P(C \mid B)P(D \mid C)$$

- There is structure to the summation, e.g., repeated $P(a^1)P(b^1|a^1)+P(a^2)P(b^1|a^2)$
- Let's modify the computation to first compute

 $P(a^1)P(b^1|a^1) + P(a^2)P(b^1|a^2)$

Let's modify the computation to first compute

 $P(a^1)P(b^1|a^1) + P(a^2)P(b^1|a^2)$

and

 $P(a^1)P(b^2 | a^1) + P(a^2)P(b^2 | a^2)$

Then, we get

• We define $T_1: Val(B) \rightarrow R, T_1(b^i) = P(a^1)P(b^i | a^1) + P(a^2)P(b^i | a^2)$

We now have

We can once more reverse the order of the product and the sum and get

$$\begin{array}{rl} (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^1\mid c^1) \\ + & (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^1\mid c^2) \\ & (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^2\mid c^1) \\ + & (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^2\mid c^2) \end{array}$$

There are still other repeated computations!

• We define T_2 : Val(C) $\rightarrow R$, with

$$T_2(c^1) = T_1(b^1)P(c^1|b^1) + T_1(b^2)P(c^1|b^2)$$

$$T_2(c^2) = T_1(b^1)P(c^2|b^1) + T_1(b^2)P(c^2|b^2)$$

Now we can compute the marginal p(D) as

$$\tau_{2}(c^{1}) \quad P(d^{1} \mid c^{1}) \\ + \tau_{2}(c^{2}) \quad P(d^{1} \mid c^{2}) \\ \tau_{2}(c^{1}) \quad P(d^{2} \mid c^{1}) \\ + \tau_{2}(c^{2}) \quad P(d^{2} \mid c^{2}) \end{cases}$$

What Did We Do?

 $P(D) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B \mid A) P(C \mid B) P(D \mid C)$

Push in the summation of A

 $P(D) = \sum_{C} \sum_{B} P(C \mid B) P(D \mid C) \sum_{A} P(A) P(B \mid A)$

Push in the summation of B

 $P(D) = \sum_{C} P(D \mid C) \sum_{B} P(C \mid B) P(B)$

Push in the summation of C

$$P(D) = \sum_{C} P(D \mid C) P(C)$$

Rule for Sum-Product VE

If $X \notin Scope[\phi_1]$, then

$$\sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \cdot \sum_{X} \phi_2$$

Elimination In Chains: MNs

Elimination In Chains: MNs

Elimination In Chains: MNs

Variable Elimination

- Goal: P(J)
- Eliminate: <u>C</u>,D,I,H,G,S,L

 $\sum_{C,D,I,G,S,L,H} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J)$

Variable Elimination with evidence

- Goal: P(J, I = i, H=h)
- Eliminate: C,D, G,S,L

 $\sum_{C,D,I,G,S,L,H} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J)$

Variable Elimination in MNs

Goal: P(D)
Eliminate: A,B,C

 $\sum_{A,B,C} \phi_1(A,B)\phi_2(B,C)\phi_3(C,D)\phi_4(A,D)$ $\sum_{B,C} \phi_2(B,C)\phi_3(C,D)\sum_{A} \phi_1(A,B)\phi_4(A,D)$ $\sum_{B,C} \phi_2(B,C)\phi_3(C,D)\tau_1(B,D)$ $\sum_{B,C} \phi_2(B,C)\phi_3(C,D)\tau_1(B,D)$ $= \rho(D)$ At the end of elimination get $\tau_3(D) \propto \rho(D)$

- Reduce all factors by evidence $-\text{Get a set of factors } \Phi$
- For each non-query variable Z
 - -Eliminate-Var Z from Φ :

$$\Phi' = \{\phi_i \in \Phi : Z \in Scope[\phi_i]\}$$

$$\psi = \prod_{\phi_i \in \Phi'} \phi_i$$

$$\tau = \sum_{Z} \psi$$

$$\Phi := \Phi - \Phi' \cup \{\tau\}$$

- Multiply all remaining factors
- Renormalize to get distribution

- Simple algorithm
- Works for both BNs and MNs
- Factor product and summation steps can be done in any order, subject to:
 - when Z is eliminated, all factors involving Z have been multiplied in