Probabilistic Graphical Models

Undirected Graphical Models

Probabilistic Graphical Models

Directed graphical models

- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

From Markov Condition to Factorization

A Directed Acyclic Graph

A joint Probability Distribution

$$
\begin{aligned}
& P(A, B, C, D, E, F, G, H) \\
& P(A, \ldots, H) \\
&= \prod_{V \in\{A, \ldots, H\}} P\left(V \mid P a_{G}(V)\right)
\end{aligned}
$$

Markov Condition:
Every variable is independent of its nondescendants given its parents (in the graph)

Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the Markov condition: Every variable is independent from its nondescendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph. sound (dsep->ind) and
complete (dcon->dep in some distribution that factorizes according to G)

If $I(G) \subseteq I(P)$ then G is an I-Map for P

Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the Markov condition: Every variable is independent from its nondescendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph. sound (dsep->ind) and
complete (dcon->dep in some distribution that factorizes according to G)

Summary

BN: DAG + Distribution

If $I(G) \subseteq I(P)$ then G is an I-Map for P
If G is an I-Map for P and every çthat stems from removing an edge from G is not an I-Map for P, G is minimal I-Map for P

If $I(G)=I(P)$ then G is a perfect map for P
If $I(G)=I\left(G^{\prime}\right), G$ and G^{\prime} are Markov Equivalent (I-Equivalent)
The Markov Boundary of Y is the set of Parents, Children and Spouses of G

From Markov Condition to Factorization

A Directed Acyclic Graph

A joint Probability Distribution

$$
\begin{aligned}
& P(A, B, C, D, E, F, G, H) \\
& P(A, \ldots, H) \\
&= \prod_{V \in\{A, \ldots, H\}} P\left(V \mid P a_{G}(V)\right)
\end{aligned}
$$

Markov Condition:
Every variable is independent of its nondescendants given its parents (in the graph)

Example: Misconception

Four students who get together in pairs to work on homeworks.
Only the following pairs meet:
Alice and Bob;
Bob and Charles;
Charles and Debbie; Debbie and Alice.
(Alice and Charles just can't stand each other, and Bob and Debbie had a relationship that ended badly.)
Probability of having misunderstood something in the class

Example: Misconception

Four students who get together in pairs to work on homeworks.
Only the following pairs meet:
Alice and Bob;
Bob and Charles;
Charles and Debbie; Debbie and Alice.
(Alice and Charles just can't stand each other, and Bob and Debbie had a relationship that ended badly.)
Probability of having misunderstood something in the class
$\operatorname{Ind}(A, C \mid B, D)$ $\operatorname{Ind}(B, D \mid A, C)$

Example: Misconception

(a)

(b)

(c)

Pairwise Markov Networks

Factors

A factor $\phi\left(X_{1}, \ldots, X_{k}\right)$

$$
\phi: \operatorname{Val}\left(X_{1}, \ldots, X_{k}\right) \rightarrow \mathbb{R}
$$

Scope $=\left\{X_{1}, \ldots, X_{k}\right\}$

Fundamental building block for defining distributions in high-dimensional spaces

Set of basic operations for manipulating these probability distributions

Example: JPD

I	D	G	Prob.
i^{0}	d^{0}	g^{1}	0.126
i^{0}	d^{0}	g^{2}	0.168
i^{0}	d^{0}	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	d^{1}	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	d^{1}	g^{3}	0.024

$$
\text { Scope }=\{I, D, G\}
$$

Unnormalized measure

I	D	G	Prob.
i^{0}	d^{0}	g^{1}	0.126
i^{0}	d^{0}	g^{2}	0.168
i^{0}	d^{0}	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	d^{1}	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	d^{1}	g^{3}	0.024

Scope $=\{I, D\}$

Conditional Distribution

I	D	G	Prob.
i^{0}	d^{0}	g^{1}	0.126
i^{0}	d^{0}	g^{2}	0.168
i^{0}	d^{0}	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	d^{1}	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	d^{1}	g^{3}	0.024

Scope $=\{I, D, G\}$

General Factors

D	A	$\phi(\mathrm{D}, \mathrm{A})$
d^{0}	α^{0}	100
d^{0}	a^{1}	1
d^{1}	a^{0}	1
d^{1}	a^{1}	100

Scope $=\{\mathrm{D}, \mathrm{A}\}$

Factor Product

a^{1}	b^{1}	0.5
a^{1}	b^{2}	0.8
a^{2}	b^{1}	0.1
a^{2}	b^{2}	0
a^{3}	b^{1}	0.3
a^{3}	b^{2}	0.9

b^{1}	c^{1}	0.5
b^{1}	c^{2}	0.7
b^{2}	c^{1}	0.1
b^{2}	c^{2}	0.2

Let $\boldsymbol{X}, \boldsymbol{Y}$, and \boldsymbol{Z} be three disjoint sets of variables, and let $\phi_{1}(\boldsymbol{X}, \boldsymbol{Y})$ and $\phi_{2}(\boldsymbol{Y}, \boldsymbol{Z})$ be two factors. We define the factor product $\phi_{1} \times \phi_{2}$ to be a factor $\psi: \operatorname{Val}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}) \mapsto \mathbb{R}$ as follows:

$$
\psi(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z})=\phi_{1}(\boldsymbol{X}, \boldsymbol{Y}) \cdot \phi_{2}(\boldsymbol{Y}, \boldsymbol{Z})
$$

a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

Factor Marginalization

a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

$$
\begin{aligned}
& \phi\left(a^{1}, c^{1}\right)=\sum_{b} \phi\left(a^{1}, c^{1}, b\right) \\
& \qquad \begin{array}{|c|c|c|}
\hline a^{1} & c^{1} & 033 \\
\hline a^{1} & c^{2} & 0.51 \\
\hline a^{2} & c^{1} & 0.05 \\
\hline a^{2} & c^{2} & 0.07 \\
\hline a^{3} & c^{1} & 0.24 \\
\hline a^{3} & c^{2} & 0.39 \\
\hline
\end{array}
\end{aligned}
$$

Let \boldsymbol{X} be a set of variables, and $Y \notin \boldsymbol{X}$ a variable. Let $\phi(\boldsymbol{X}, Y)$ be a factor. We define the factor marginalization of Y in ϕ, denoted $\sum_{Y} \phi$, to be a factor ψ over X such that:

$$
\psi(\boldsymbol{X})=\sum_{Y} \phi(\boldsymbol{X}, Y)
$$

This operation is also called summing out of Y in ψ.

Factor Reduction

a^{1}	b^{1}	c^{1}	$0.5 \cdot 0.5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0 \cdot 0.1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{2}	c^{1}	0.08
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{2}	c^{1}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{2}	c^{1}	0.09

Let $\phi(\boldsymbol{Y})$ be a factor, and $\boldsymbol{U}=\boldsymbol{u}$ an assignment for $\boldsymbol{U} \subseteq \boldsymbol{Y}$. We define the reduction of the factor ϕ to the context $\boldsymbol{U}=\boldsymbol{u}$, denoted $\phi[\boldsymbol{U}=\boldsymbol{u}]$ (and abbreviated $\phi[\boldsymbol{u}]$), to be a factor over scope $\boldsymbol{Y}^{\prime}=\boldsymbol{Y}-\boldsymbol{U}$, such that

$$
\phi[\boldsymbol{u}]\left(\boldsymbol{y}^{\prime}\right)=\phi\left(\boldsymbol{y}^{\prime}, \boldsymbol{u}\right)
$$

For $\boldsymbol{U} \not \subset \boldsymbol{Y}$, we define $\phi[\boldsymbol{u}]$ to be $\phi\left[\boldsymbol{U}^{\prime}=\boldsymbol{u}^{\prime}\right]$, where $\boldsymbol{U}^{\prime}=\boldsymbol{U} \cap \boldsymbol{Y}$, and $\boldsymbol{u}^{\prime}=$ $\boldsymbol{u}\left\langle\boldsymbol{U}^{\prime}\right\rangle$, where $\boldsymbol{u}\left\langle\boldsymbol{U}^{\prime}\right\rangle$ denotes the assignment in \boldsymbol{u} to the variables in \boldsymbol{U}^{\prime}.

Pairwise Markov Networks

Pairwise Markov Networks

Assignment				Unnomalized
a^{0}	b^{0}	c^{0}	d^{0}	300000
a^{0}	b^{0}	c^{0}	d^{1}	300000
a^{0}	b^{0}	c^{1}	d^{0}	300000
a^{0}	b^{0}	c^{1}	d^{1}	30
a^{0}	b^{1}	c^{0}	d^{0}	500
a^{0}	b^{1}	c^{0}	d^{1}	500
a^{0}	b^{1}	c^{1}	d^{0}	5000000
a^{0}	b^{1}	c^{1}	d^{1}	500
a^{1}	b^{0}	c^{0}	d^{0}	100
a^{1}	b^{0}	c^{0}	d^{1}	1000000
a^{1}	b^{0}	c^{1}	d^{0}	100
a^{1}	b^{0}	c^{1}	d^{1}	100
a^{1}	b^{1}	c^{0}	d^{0}	10
a^{1}	b^{1}	c^{0}	d^{1}	100000
a^{1}	b^{1}	c^{1}	d^{0}	100000
a^{1}	b^{1}	c^{1}	d^{1}	100000

$$
\begin{gathered}
\tilde{P}(A, B, C, D)=\phi(A, B) \phi(B, C) \phi(C, D) \phi(D, A) \\
P(A, B, C, D)=\frac{1}{Z} \phi(A, B) \phi(B, C) \phi(C, D) \phi(D, A)
\end{gathered}
$$

a^{0}	b^{0}	0.13
α^{0}	$\mathrm{~b}^{1}$	0.69
α^{1}	$\mathrm{~b}^{0}$	0.14
α^{1}	$\mathrm{~b}^{1}$	0.04

Pairwise Markov Networks

A pairwise Markov network is an undirected graph whose nodes are X_{1}, \ldots, X_{n} and each edge $X_{i}-X_{j}$ is associated with a factor (potential) $\phi_{i j}\left(X_{i}-X_{j}\right)$

Example: Image Segmentation

Example: Image Segmentation

More general Markov Networks

Consider a fully connected pairwise
Markov network over X_{1}, \ldots, X_{n} where each
X_{i} has d values. How many parameters
does the network have?
a. $O\left(d^{n}\right)$
b. $O\left(n^{d}\right)$
c. $O\left(n^{2} d^{2}\right)$
d. $O(n d)$

More general Markov Networks

$$
\begin{gathered}
\Phi=\left\{\phi_{1}\left(\boldsymbol{D}_{1}\right), \ldots, \phi_{k}\left(\boldsymbol{D}_{k}\right)\right\} \\
\tilde{P}_{\Phi}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} \phi_{i}\left(\boldsymbol{D}_{\mathrm{i}}\right)
\end{gathered}
$$

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{1}	c^{2}	0.35
a^{1}	b^{2}	c^{1}	0.08
a^{1}	b^{2}	c^{2}	0.16
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{1}	c^{2}	0.07
a^{2}	b^{2}	c^{1}	0
a^{2}	b^{2}	c^{2}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{1}	c^{2}	0.21
a^{3}	b^{2}	c^{1}	0.09
a^{3}	b^{2}	c^{2}	0.18

More general Markov Networks

$$
Z_{\Phi}=\sum_{X_{1} \ldots, X_{n}} \tilde{P}_{\Phi}\left(X_{1}, \ldots, X_{n}\right)
$$

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{1}	c^{2}	0.35
a^{1}	b^{2}	c^{1}	0.08
a^{1}	b^{2}	c^{2}	0.16
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{1}	c^{2}	0.07
a^{2}	b^{2}	c^{1}	0
a^{2}	b^{2}	c^{2}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{1}	c^{2}	0.21
a^{3}	b^{2}	c^{1}	0.09
a^{3}	b^{2}	c^{2}	0.18

More general Markov Networks

$$
\begin{gathered}
\Phi=\left\{\phi_{1}\left(\boldsymbol{D}_{1}\right), \ldots, \phi_{k}\left(\boldsymbol{D}_{k}\right)\right\} \\
\tilde{P}_{\Phi}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} \phi_{i}\left(\boldsymbol{D}_{\mathbf{i}}\right) \\
Z_{\Phi}=\sum_{X_{1} \ldots X_{n}} \tilde{P}_{\Phi}\left(X_{1}, \ldots, X_{n}\right)
\end{gathered}
$$

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{1}	c^{2}	0.35
a^{1}	b^{2}	c^{1}	0.08
a^{1}	b^{2}	c^{2}	0.16
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{1}	c^{2}	0.07
a^{2}	b^{2}	c^{1}	0
a^{2}	b^{2}	c^{2}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{1}	c^{2}	0.21
a^{3}	b^{2}	c^{1}	0.09
a^{3}	b^{2}	c^{2}	0.18

$$
P_{\phi}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{Z_{\phi}} \prod_{i} \phi_{i}\left(\boldsymbol{D}_{\mathrm{i}}\right)
$$

Induced Markov Network

$A-B$ if A and B appear

 together in some factor.$$
\Phi=\left\{\phi_{A, B, C}(A, B, C), \phi_{A, C, D}(A, C, D)\right\}
$$

Factorization

$A-B$ if A and B appear together in some function.

We say G factorizes according to (over) P if there exists a set of factors $\Phi=\left\{\phi_{1}\left(\boldsymbol{D}_{1}\right), \ldots, \phi_{k}\left(\boldsymbol{D}_{k}\right)\right\}$ such that G is the induced graph for Φ

A graph does not imply a unique factorization

Factorization

$A-B$ if A and B appear together in some function.

> A minimal factorization is one where all factors are maximal cliques (not a strict subset of any other clique) in the MRF

We say G factorizes according to (over) P if there exists a set of factors $\Phi=\left\{\phi_{1}\left(\boldsymbol{D}_{1}\right), \ldots, \phi_{k}\left(\boldsymbol{D}_{k}\right)\right\}$ such that G is the induced graph for Φ

A graph does not imply a unique factorization

Example

Find the minimal factorization

Find a valid factorization that is not minimal

Example

Find the minimal factorization

Find a valid factorization that is not minimal

$$
\begin{gathered}
\psi\left(x_{1}, x_{2}, x_{3}\right) \psi\left(x_{3}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \\
\psi\left(x_{1}, x_{2}\right) \psi\left(x_{2}, x_{3}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{3}, x_{4}\right) \psi\left(x_{3}, x_{5}\right)
\end{gathered}
$$

Separation in Markov Networks

Definition:

\mathbf{X} and \mathbf{Y} are separated in H given \mathbf{Z} if there is no active trail in \mathbf{H} between \mathbf{X} and \mathbf{Y} given \mathbf{Z}

Active trail: Undirected path
Conditioning on a node on the path blocks the path

Factorization and Independence

Factorization \Rightarrow Independence

Theorem: If P factorizes over (according to) H, and $\operatorname{sep}_{H}(\mathbf{X}, \mathbf{Y} \mid$ $Z)_{\text {) }}$ then $\operatorname{Ind}(\mathbf{X}, \mathrm{Y} \mid \mathrm{Z})$ in P

If P factorizes over H, then H is an I-map of P

Independence \Rightarrow Factorization
Theorem (Hammersley Clifford): If H is an I-Map for P , and P is
a positive distribution, then P factorizes over H

Markov Networks and DAGs

G

If G is a perfect map for P
Find an MN that is a perfect map for P

Markov Networks and DAGs

If G is a perfect map for P Find an MN that is a perfect map for P
Going from BN to MN you lose some independencies

I-equivalence

Which networks are Markov
Equivalent to G?

II

III

IV

Practice

Find a MN that is an I-Map of the probability induced by G

Practice: Separations

Log-linear Representation

$$
\begin{array}{cc}
\tilde{P}=\prod_{i} \phi_{i}\left(\boldsymbol{D}_{i}\right) & \tilde{P}=\exp \left(-\sum_{j} w_{j} f_{j}\left(\boldsymbol{D}_{\boldsymbol{j}}\right)\right. \\
\text { Original parameterization } & \text { Log-linear parameterization }
\end{array}
$$

Features are functions (like factors) without the non-negativity assumption.
Each feature has a single weight.
Different features can have the same scope.

Log-linear Representation

$$
\begin{gathered}
\phi\left(X_{1}, X_{2}\right)=\left(\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right) \quad f_{12}^{i j}=I\left(X_{1}=i \text { and } X_{2}=j\right) \\
\text { One feature for each } \mathrm{i}, \mathrm{j} \text { value }
\end{gathered}
$$

$$
\begin{aligned}
& \phi\left(X_{2}, X_{3}\right)=\exp \left(-\sum_{k l} w_{k l} f_{i j}^{k l}\left(X_{1}, X_{2}\right)\right) \\
& w_{k l}=-\log \left(a_{k l}\right)
\end{aligned}
$$

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i} \\
x_{i} \in\{-1,1\} \\
f_{i, j}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j} \\
P(\boldsymbol{X}) \propto e^{-\frac{1}{T} E(\boldsymbol{X})}
\end{gathered}
$$

Example: Ising Models

$$
\begin{gathered}
E\left(x_{1}, \ldots, x_{n}\right)=-\sum_{i<j} w_{i, j} x_{i} x_{j}-\sum_{i} u_{i} x_{i} \\
x_{i} \in\{-1,1\} \\
f_{i, j}\left(X_{i}, X_{j}\right)=X_{i} \cdot X_{j} \\
P(\boldsymbol{X}) \propto e^{-\frac{1}{T} E(\boldsymbol{X})}
\end{gathered}
$$

Example: Boltzman machine

$$
\begin{gathered}
E=-\sum_{i<j} w_{i j} s_{i} s_{j}+-\sum_{i} \theta_{i} s_{i} \\
s_{i} \in\{0,1\}
\end{gathered}
$$

- $w_{i j}$ is the connection strength between unit j and unit i.
- s_{i} is the state, $s_{i} \in\{0,1\}$, of unit i.
- θ_{i} is the bias of unit i in the global energy function. ($-\theta_{i}$ is the activation threshold for the unit.)
Model for neural activation

