Probabilistic Graphical Models

Undirected Graphical Models

Probabilistic Graphical Models

Directed graphical models

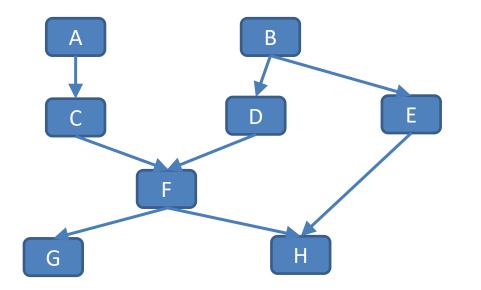
- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

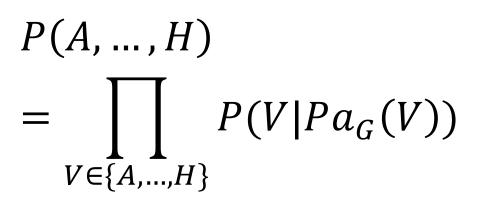
From Markov Condition to Factorization

A Directed Acyclic Graph



A joint Probability Distribution

P(A, B, C, D, E, F, G, H)



Markov Condition:

Every variable is independent of its nondescendants given its parents (in the graph)

Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the Markov condition: Every variable is independent from its non-descendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph. sound (dsep->ind) and complete (dcon->dep in some distribution that factorizes according to G)

If $I(G) \subseteq I(P)$ then G is an I-Map for P

Summary

BN: DAG + Distribution

The distribution factorizes according to the graph based on the Markov condition: Every variable is independent from its non-descendants (in the graph) based on its parents (in the graph)

D-separation allows us to read the independencies from the graph. sound (dsep->ind) and complete (dcon->dep in some distribution that factorizes according to G)

Summary

BN: DAG + Distribution

```
If I(G) \subseteq I(P) then G is an I-Map for P
```

If *G* is an I-Map for *P* and every chat stems from removing an edge from *G* is not an I-Map for *P*, *G* is minimal I-Map for *P*

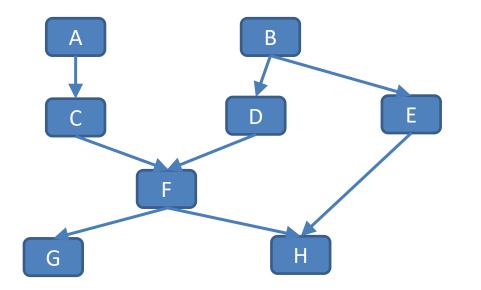
If I(G) = I(P) then G is a perfect map for P

If I(G) = I(G'), G and G' are Markov Equivalent (I-Equivalent)

The Markov Boundary of *Y* is the set of Parents, Children and Spouses of *G*

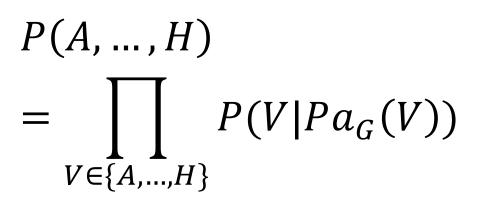
From Markov Condition to Factorization

A Directed Acyclic Graph



A joint Probability Distribution

P(A, B, C, D, E, F, G, H)



Markov Condition:

Every variable is independent of its nondescendants given its parents (in the graph)

Example: Misconception

Four students who get together in pairs to work on homeworks.

Only the following pairs meet:

Alice and Bob; Bob and Charles; Charles and Debbie; Debbie and Alice.

(Alice and Charles just can't stand each other, and Bob and Debbie had a relationship that ended badly.) Probability of having misunderstood something in the class

Example: Misconception

Four students who get together in pairs to work on homeworks.

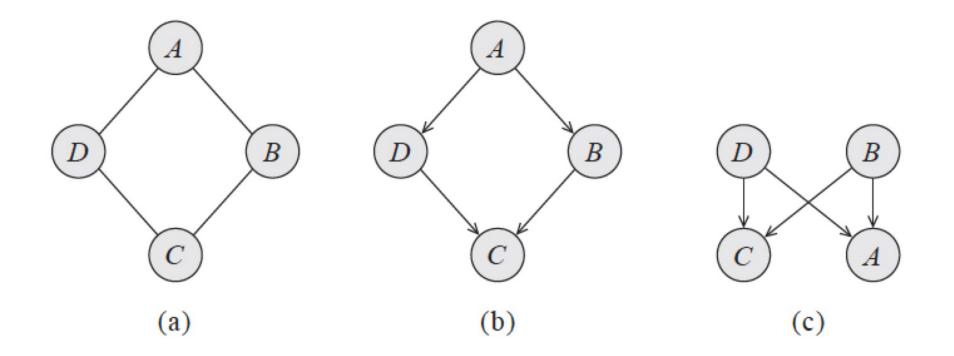
Only the following pairs meet:

Alice and Bob; Bob and Charles; Charles and Debbie; Debbie and Alice.

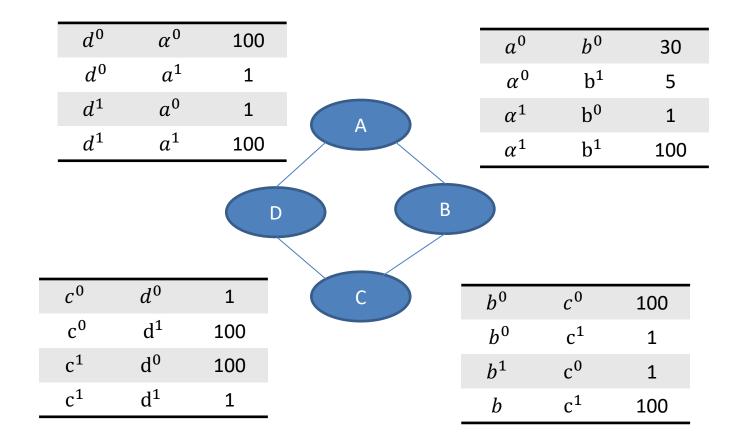
(Alice and Charles just can't stand each other, and Bob and Debbie had a relationship that ended badly.) Probability of having misunderstood something in the class

Ind(A, C|B,D) Ind(B, D|A, C)

Example: Misconception



Pairwise Markov Networks



Factors

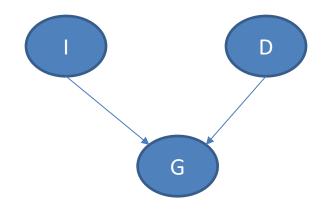
A factor $\phi(X_{1, \dots, X_{k}})$ $\phi: \operatorname{Val}(X_{1}, \dots, X_{k}) \to \mathbb{R}$ Scope = $\{X_{1, \dots, X_{k}}\}$

Fundamental building block for defining distributions in high-dimensional spaces

Set of basic operations for manipulating these probability distributions

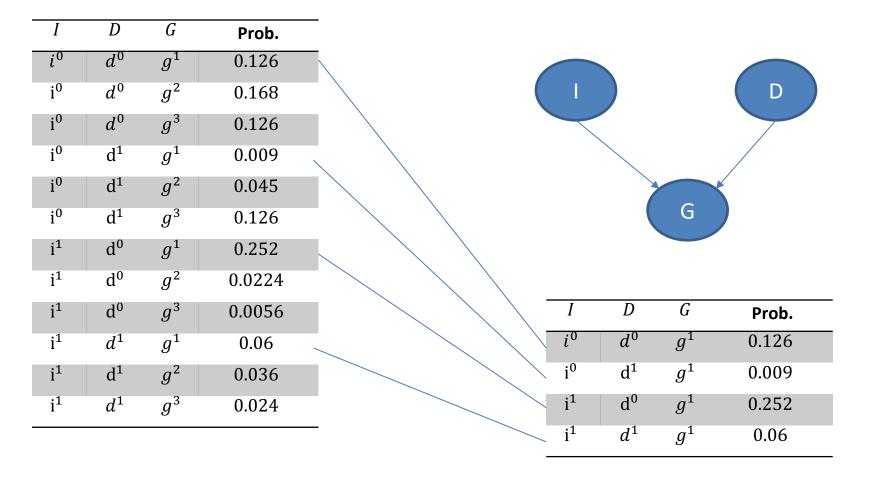
Example: JPD

Ι	D	G	Prob.
i ⁰	d^0	g^{1}	0.126
i ⁰	d^0	g^2	0.168
i ⁰	d^0	g^3	0.126
i ⁰	d ¹	g^1	0.009
i ⁰	d1	g^2	0.045
i ⁰	d ¹	g^3	0.126
i ¹	d ⁰	g^1	0.252
i ¹	d ⁰	g^2	0.0224
i ¹	d ⁰	g^3	0.0056
i ¹	d^1	g^1	0.06
i ¹	d ¹	g^2	0.036
i ¹	d^1	g^3	0.024



Scope = $\{I, D, G\}$

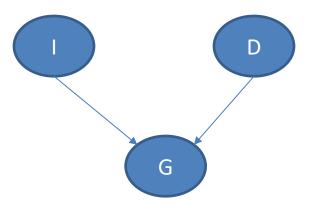
Unnormalized measure



Scope = $\{I, D\}$

Conditional Distribution

Ι	D	G	Prob.
i ⁰	d^0	g^1	0.126
i ⁰	d^0	g^2	0.168
i ⁰	d^0	g^3	0.126
i ⁰	d^1	g^1	0.009
i ⁰	d ¹	g^2	0.045
i ⁰	d ¹	g^3	0.126
i ¹	d ⁰	g^1	0.252
i ¹	d ⁰	g^2	0.0224
i ¹	d ⁰	g^3	0.0056
i ¹	d^1	g^1	0.06
i ¹	d ¹	g^2	0.036
i ¹	d^1	g^3	0.024



	g^1	g^2	g^3
i ⁰ , d ⁰	0.3	0.4	0.3
i ⁰ , d ¹	0.05	0.25	0.7
i ¹ , d ⁰	0.9	0.08	0.02
i ¹ , d ¹	0.5	0.3	0.2

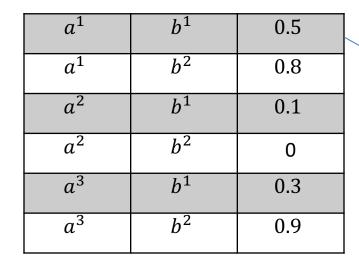
Scope = $\{I, D, G\}$

General Factors

D	А	$\phi(D, A)$
d^0	α^0	100
d^0	a^1	1
d^1	a^0	1
d^1	a^1	100

Scope = $\{D, A\}$

Factor Product



/	b^1	<i>c</i> ¹	0.5
	b^1	<i>c</i> ²	0.7
	<i>b</i> ²	<i>c</i> ¹	0.1
	<i>b</i> ²	<i>c</i> ²	0.2

Let *X*, *Y*, and *Z* be three disjoint sets of variables, and let $\phi_1(X, Y)$ and $\phi_2(Y, Z)$ be two factors. We define the factor product $\phi_1 \times \phi_2$ to be a factor ψ : Val $(X, Y, Z) \mapsto \mathbb{R}$ as follows:

 $\psi(X, Y, Z) = \phi_1(X, Y) \cdot \phi_2(Y, Z)$

a ¹	b^1	<i>c</i> ¹	$0.5 \cdot 0.5 = 0.25$
<i>a</i> ¹	b^1	<i>c</i> ²	$0.5 \cdot 0.7 = 0.35$
<i>a</i> ¹	<i>b</i> ²	<i>C</i> ¹	$0.8 \cdot 0.1 = 0.08$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	$0.8 \cdot 0.2 = 0.16$
<i>a</i> ²	b^1	<i>c</i> ¹	$0.1 \cdot 0.5 = 0.05$
a ²	b^1	<i>c</i> ²	$0.1 \cdot 0.7 = 0.07$
a ²	<i>b</i> ²	<i>C</i> ¹	$0 \cdot 0.1 = 0$
a ²	<i>b</i> ²	<i>c</i> ²	$0 \cdot 0.2 = 0$
<i>a</i> ³	b^1	<i>c</i> ¹	$0.3 \cdot 0.5 = 0.15$
<i>a</i> ³	<i>b</i> ¹	<i>c</i> ²	$0.3 \cdot 0.7 = 0.21$
<i>a</i> ³	<i>b</i> ²	<i>C</i> ¹	$0.9 \cdot 0.1 = 0.09$
<i>a</i> ³	<i>b</i> ²	<i>c</i> ²	$0.9 \cdot 0.2 = 0.18$

Factor Marginalization

a ¹	b^1	<i>C</i> ¹	$0.5 \cdot 0.5 = 0.25$
a ¹	b^1	<i>c</i> ²	$0.5 \cdot 0.7 = 0.35$
<i>a</i> ¹	<i>b</i> ²	<i>C</i> ¹	$0.8 \cdot 0.1 = 0.08$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	$0.8 \cdot 0.2 = 0.16$
<i>a</i> ²	b^1	<i>c</i> ¹	$0.1 \cdot 0.5 = 0.05$
a^2	b^1	<i>c</i> ²	$0.1 \cdot 0.7 = 0.07$
a ²	<i>b</i> ²	<i>C</i> ¹	$0 \cdot 0.1 = 0$
a^2	<i>b</i> ²	<i>c</i> ²	$0 \cdot 0.2 = 0$
<i>a</i> ³	b^1	<i>C</i> ¹	$0.3 \cdot 0.5 = 0.15$
<i>a</i> ³	<i>b</i> ¹	<i>c</i> ²	$0.3 \cdot 0.7 = 0.21$
<i>a</i> ³	<i>b</i> ²	<i>C</i> ¹	$0.9 \cdot 0.1 = 0.09$
<i>a</i> ³	<i>b</i> ²	<i>c</i> ²	$0.9 \cdot 0.2 = 0.18$

$$\phi(a^1,c^1) = \sum_b \phi(a^1,c^1,b)$$

a ¹	c ¹	033
<i>a</i> ¹	<i>c</i> ²	0.51
a^2	<i>c</i> ¹	0.05
a ²	<i>c</i> ²	0.07
a ³	<i>c</i> ¹	0.24
a ³	<i>c</i> ²	0.39

Let *X* be a set of variables, and $Y \notin X$ a variable. Let $\phi(X, Y)$ be a factor. We define the factor marginalization of *Y* in ϕ , denoted $\sum_{Y} \phi$, to be a factor ψ over *X* such that:

$$\psi(\mathbf{X}) = \sum_{\mathbf{Y}} \phi(\mathbf{X}, \mathbf{Y})$$

This operation is also called summing out of *Y* in ψ .

Factor Reduction

<i>a</i> ¹	b^1	C ¹	$0.5 \cdot 0.5 = 0.25$
<i>a</i> ¹	b^1	<i>c</i> ²	$0.5 \cdot 0.7 = 0.35$
<i>a</i> ¹	<i>b</i> ²	<i>C</i> ¹	$0.8 \cdot 0.1 = 0.08$
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	$0.8 \cdot 0.2 = 0.16$
<i>a</i> ²	<i>b</i> ¹	<i>C</i> ¹	$0.1 \cdot 0.5 = 0.05$
<i>a</i> ²	b^1	<i>c</i> ²	$0.1 \cdot 0.7 = 0.07$
<i>a</i> ²	<i>b</i> ²	C ¹	$0 \cdot 0.1 = 0$
<i>a</i> ²	<i>b</i> ²	<i>c</i> ²	$0 \cdot 0.2 = 0$
<i>a</i> ³	b^1	C ¹	$0.3 \cdot 0.5 = 0.15$
<i>a</i> ³	b^1	<i>c</i> ²	$0.3 \cdot 0.7 = 0.21$
<i>a</i> ³	<i>b</i> ²	<i>C</i> ¹	$0.9 \cdot 0.1 = 0.09$
<i>a</i> ³	<i>b</i> ²	<i>c</i> ²	$0.9 \cdot 0.2 = 0.18$

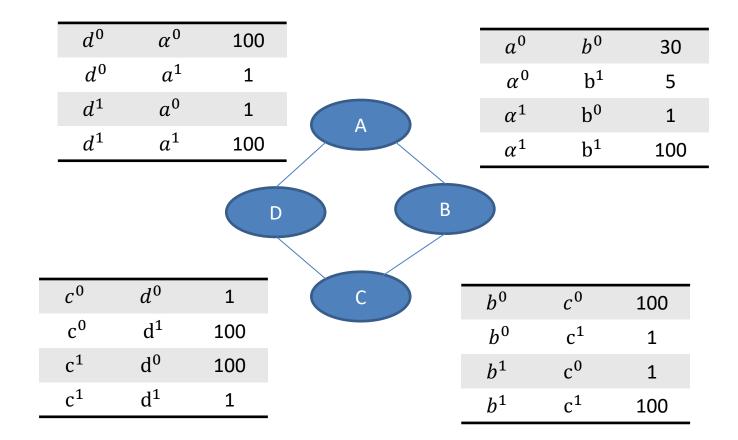
<i>a</i> ¹	b^1	C ¹	0.25
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ¹	0.08
a ²	b^1	<i>C</i> ¹	0.05
<i>a</i> ²	<i>b</i> ²	<i>c</i> ¹	0
<i>a</i> ³	b^1	C ¹	0.15
a^3	<i>b</i> ²	c^1	0.09

Let $\phi(Y)$ be a factor, and U = u an assignment for $U \subseteq Y$. We define the reduction of the factor ϕ to the context U = u, denoted $\phi[U = u]$ (and abbreviated $\phi[u]$), to be a factor over scope Y' = Y - U, such that

 $\phi[\boldsymbol{u}](\boldsymbol{y}') = \phi(\boldsymbol{y}', \boldsymbol{u})$

For $U \not\subset Y$, we define $\phi[u]$ to be $\phi[U' = u']$, where $U' = U \cap Y$, and $u' = u \langle U' \rangle$, where $u \langle U' \rangle$ denotes the assignment in u to the variables in U'.

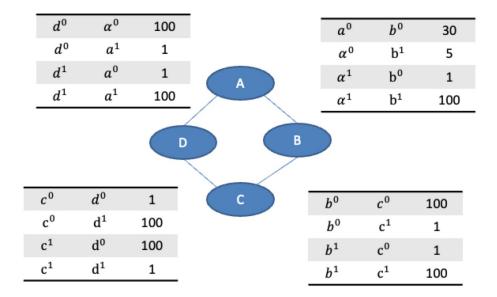
Pairwise Markov Networks



Pairwise Markov Networks

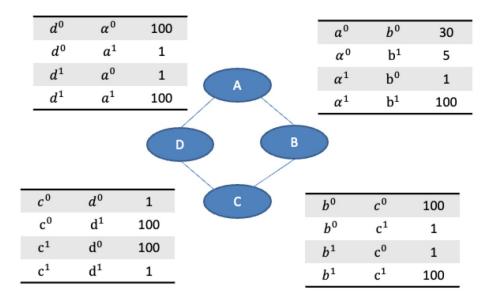
	Assigr	Unnomalized		
<i>a</i> ⁰	<i>b</i> ⁰	<i>c</i> ⁰	d^0	300000
<i>a</i> ⁰	<i>b</i> ⁰	<i>c</i> ⁰	d^1	300000
<i>a</i> ⁰	<i>b</i> ⁰	<i>c</i> ¹	d^0	300000
<i>a</i> ⁰	<i>b</i> ⁰	<i>c</i> ¹	d^1	30
<i>a</i> ⁰	<i>b</i> ¹	<i>c</i> ⁰	d^0	500
<i>a</i> ⁰	<i>b</i> ¹	<i>c</i> ⁰	d^1	500
<i>a</i> ⁰	<i>b</i> ¹	<i>c</i> ¹	d^0	5000000
a ⁰	<i>b</i> ¹	<i>c</i> ¹	d^1	500
<i>a</i> ¹	<i>b</i> ⁰	<i>c</i> ⁰	d^0	100
<i>a</i> ¹	<i>b</i> ⁰	<i>c</i> ⁰	d^1	1000000
<i>a</i> ¹	<i>b</i> ⁰	<i>c</i> ¹	d^0	100
<i>a</i> ¹	<i>b</i> ⁰	<i>c</i> ¹	d^1	100
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ⁰	d^0	10
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ⁰	d^1	100000
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ¹	d^0	100000
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ¹	<i>d</i> ¹	100000

 $\tilde{P}(A, B, C, D) = \phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A)$ $P(A, B, C, D) = \frac{1}{Z}\phi(A, B)\phi(B, C)\phi(C, D)\phi(D, A)$



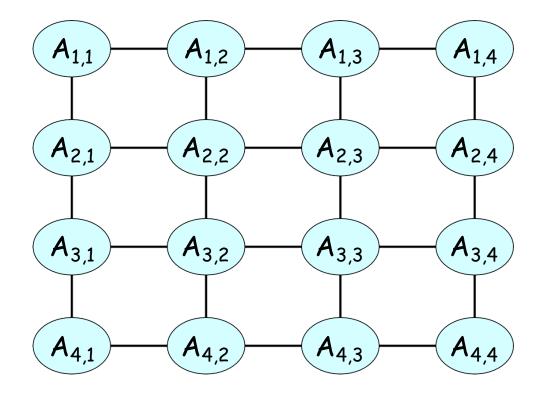
Eyeballing probabilities is hard

<i>a</i> ⁰	b^0	0.13
α^0	b^1	0.69
α^1	b ⁰	0.14
α^1	b ¹	0.04

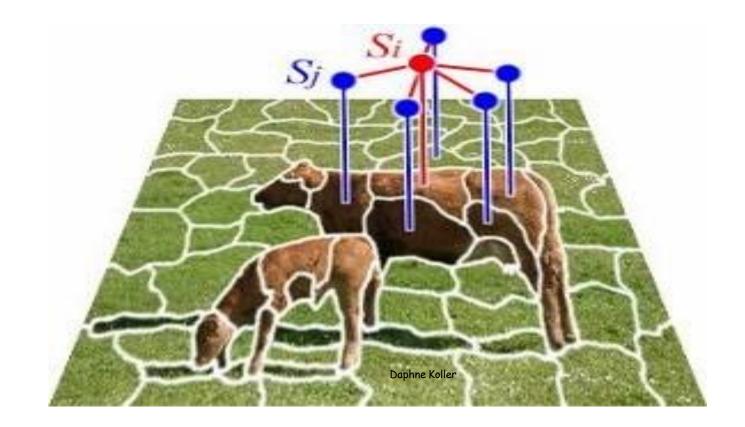


Pairwise Markov Networks

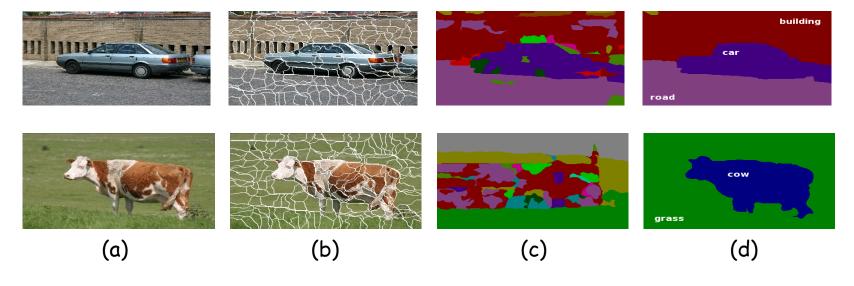
A pairwise Markov network is an undirected graph whose nodes are $X_1, ..., X_n$ and each edge $X_i - X_j$ is associated with a factor (potential) $\phi_{ij} (X_i - X_j)$



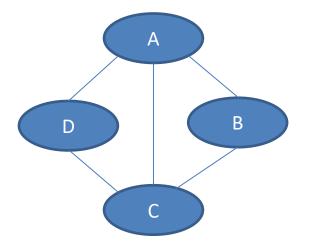
Example: Image Segmentation



Example: Image Segmentation



Daphne Koller

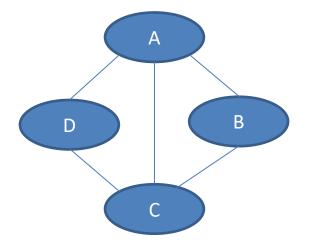


Consider a fully connected pairwise Markov network over $X_1, ..., X_n$ where each X_i has d values. How many parameters does the network have?

a. $O(d^n)$

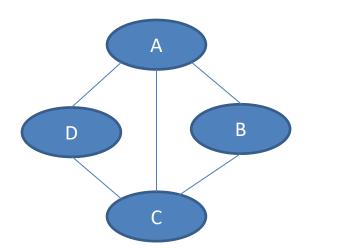
- b. $O(n^d)$
- *c.* $O(n^2d^2)$

d. 0(*nd*)



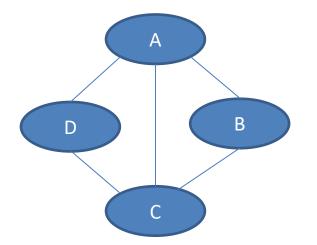
$$a^1$$
 b^1 c^1 0.25 a^1 b^1 c^2 0.35 a^1 b^2 c^1 0.08 a^1 b^2 c^2 0.16 a^2 b^1 c^1 0.05 a^2 b^1 c^2 0.07 a^2 b^2 c^1 0 a^3 b^1 c^2 0.15 a^3 b^1 c^2 0.21 a^3 b^2 c^2 0.18

$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}$$
$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \prod_i \phi_i(\boldsymbol{D}_i)$$



$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}$$
$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \prod_i \phi_i(\boldsymbol{D}_i)$$
$$Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ¹	0.25
a ¹	<i>b</i> ¹	<i>c</i> ²	0.35
<i>a</i> ¹	<i>b</i> ²	c^1	0.08
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	0.16
a ²	<i>b</i> ¹	<i>c</i> ¹	0.05
a ²	<i>b</i> ¹	c^2	0.07
a ²	<i>b</i> ²	<i>c</i> ¹	0
a ²	<i>b</i> ²	<i>c</i> ²	0
<i>a</i> ³	<i>b</i> ¹	c^1	0.15
a ³	<i>b</i> ¹	<i>c</i> ²	0.21
a ³	<i>b</i> ²	<i>C</i> ¹	0.09
<i>a</i> ³	<i>b</i> ²	<i>c</i> ²	0.18

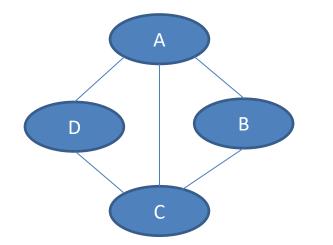


$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}$$
$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \prod_i \phi_i(\boldsymbol{D}_i)$$
$$Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

$$P_{\phi}(X_1, \dots, X_n) = \frac{1}{Z_{\phi}} \prod_i \phi_i(\boldsymbol{D}_i)$$

<i>a</i> ¹	<i>b</i> ¹	c ¹	0.25
<i>a</i> ¹	<i>b</i> ¹	<i>c</i> ²	0.35
<i>a</i> ¹	<i>b</i> ²	C ¹	0.08
<i>a</i> ¹	<i>b</i> ²	<i>c</i> ²	0.16
a ²	<i>b</i> ¹	<i>c</i> ¹	0.05
<i>a</i> ²	b^1	c^2	0.07
a ²	<i>b</i> ²	c^1	0
a ²	<i>b</i> ²	c^2	0
a ³	<i>b</i> ¹	<i>c</i> ¹	0.15
a ³	<i>b</i> ¹	c^2	0.21
<i>a</i> ³	<i>b</i> ²	<i>c</i> ¹	0.09
<i>a</i> ³	<i>b</i> ²	c^2	0.18

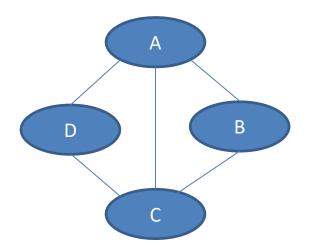
Induced Markov Network



A-B if A and B appear together in some factor.

 $\Phi = \left\{ \phi_{A,B,C}(A,B,C), \phi_{A,C,D}(A,C,D) \right\}$

Factorization

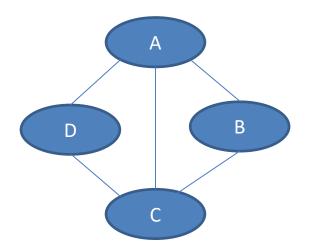


A-B if A and B appear together in some function.

We say G factorizes according to (over) P if there exists a set of factors $\Phi = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$ such that G is the induced graph for Φ

A graph does not imply a unique factorization

Factorization

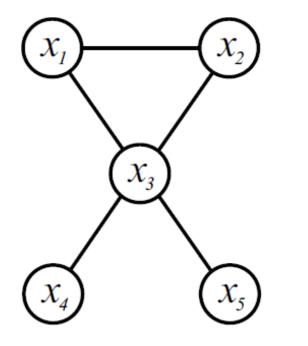


A-B if A and B appear together in some function.

We say G factorizes according to (over) P if there exists a set of factors $\Phi = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$ such that G is the induced graph for Φ A *minimal factorization* is one where all factors are *maximal cliques* (not a strict subset of any other clique) in the MRF

A graph does not imply a unique factorization

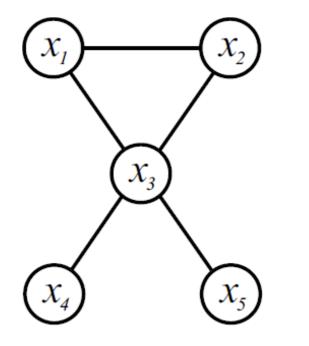
Example



Find the minimal factorization

Find a valid factorization that is not minimal

Example

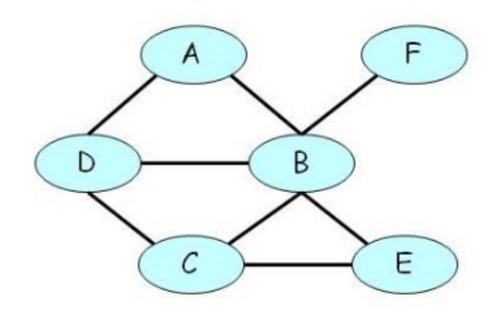


Find the minimal factorization

Find a valid factorization that is not minimal

 $\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$ $\psi(x_1, x_2)\psi(x_2, x_3)\psi(x_1, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$

Separation in Markov Networks



Definition:

X and Y are *separated* in H given Z if there is no active trail in H between X and Y given Z

Active trail: Undirected path Conditioning on a node on the path blocks the path

Factorization and Independence

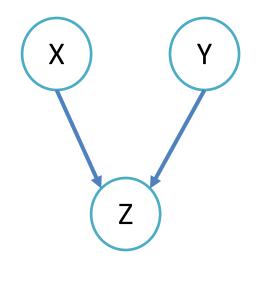
Factorization \Rightarrow Independence

Theorem: If P factorizes over (according to) H, and sep_H(**X**, **Y** | **Z**) then Ind(**X**, **Y** | **Z**) in P

If P factorizes over H, then H is an I-map of P

Independence⇒ Factorization **Theorem (**Hammersley Clifford): If H is an I-Map for P, and P is a positive distribution, then P factorizes over H

Markov Networks and DAGs



G

If G is a perfect map for P Find an MN that is a perfect map for P

Markov Networks and DAGs

If G is a perfect map for P Find an MN that is a perfect map for P Going from BN to MN you lose some independencies

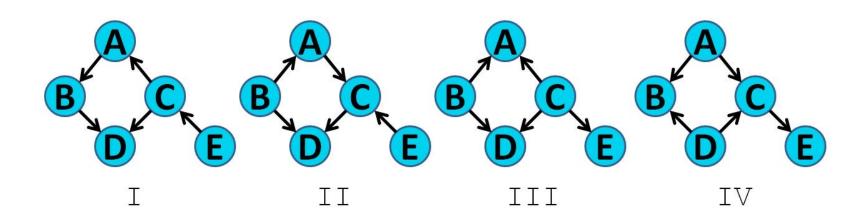
I-equivalence

E

B

G

Which networks are Markov Equivalent to G?



Practice

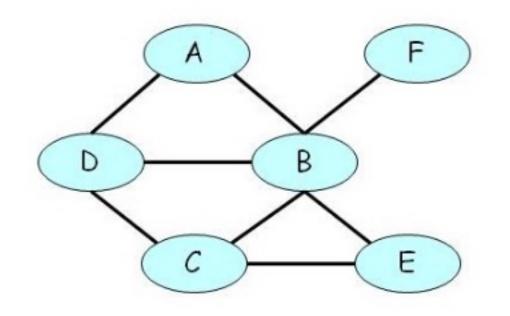
E

B

G

Find a MN that is an I-Map of the probability induced by G

Practice: Separations



Log-linear Representation

$$\tilde{P} = \prod_{i} \phi_{i}(\boldsymbol{D}_{i}) \qquad \tilde{P} = \exp\left(-\sum_{j} w_{j} f_{j}(\boldsymbol{D}_{j})\right)$$

Original parameterization

Log-linear parameterization

Features are functions (like factors) without the non-negativity assumption. Each feature has a single weight. Different features can have the same scope.

Log-linear Representation

$$\phi(X_1, X_2) = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}$$
 $f_{12}^{ij} = I(X_1 = i \text{ and } X_2 = j)$

One feature for each i, j value

$$\phi(X_2, X_3) = \exp\left(-\sum_{kl} w_{kl} f_{ij}^{kl}(X_1, X_2)\right)$$

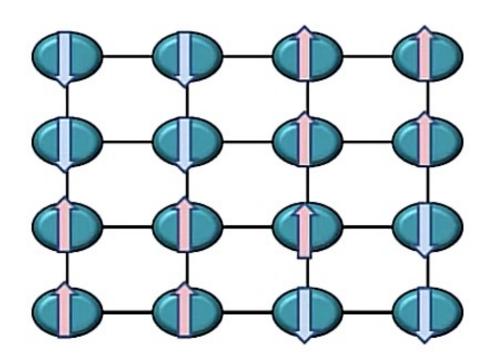
$$w_{kl} = -\log(a_{kl})$$

Example: Ising Models

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i$$
$$x_i \in \{-1, 1\}$$
$$f_{i,j}(X_i, X_j) = X_i \cdot X_j$$
$$P(\mathbf{X}) \propto e^{-\frac{1}{T}E(\mathbf{X})}$$

Example: Ising Models

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i$$
$$x_i \in \{-1, 1\}$$
$$f_{i,j}(X_i, X_j) = X_i \cdot X_j$$
$$P(\mathbf{X}) \propto e^{-\frac{1}{T}E(\mathbf{X})}$$



As T grows, w_{ij} 's become smaller

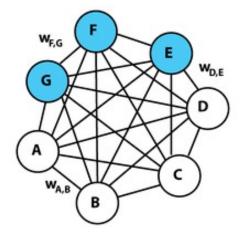
20

60 80 100

80 100 120

Example: Boltzman machine

$$E = -\sum_{i < j} w_{ij} s_i s_j + -\sum_i \theta_i s_i$$
$$s_i \in \{0, 1\}$$



- w_{ij} is the connection strength between unit *j* and unit *i*.
- s_i is the state, $s_i \in \{0,1\}$, of unit *i*.
- θ_i is the bias of unit *i* in the global energy function. ($-\theta_i$ is the activation threshold for the unit.)

Model for neural activation