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Probabilistic Graphical Models

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



Directed Graphical Models

A Directed Acyclic Graph
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A joint Probability Distribution 

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻

Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



From Markov Condition to Factorization

A Directed Acyclic Graph

A B

C D E

F

G H

A joint Probability Distribution 

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻

𝑃 𝐴,… , 𝐻
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Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph) 



The d-separation criterion

Open (d-connecting) paths :
A path is d-connecting given Z iff 
every collider on the path is in Z or has a 
descendant in Z 
AND
every non-collider on the path is not in Z.

Otherwise, the path is blocked (d-separating).
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The same path can be 
d-connecting given 𝒁𝟏, 
d-separating given 𝒁𝟐



The d-separation criterion

Algorithm to determine all independencies that are entailed by 
the MC.

Conditional independencies in the joint distribution can be 
decided based on the absence of open paths in the graph:

Open paths are called d-connecting paths (given a set of variables).
If no open path exists, the endpoints are d-separated (given the set of 
variables).
Otherwise, the endpoints are d-connected (given the set of variables)

Notation: 𝑑𝑠𝑒𝑝 A, B 𝒁 : 𝐴 and 𝐵 are d-separated given 𝒁.
𝑑𝑐𝑜𝑛 A, B 𝒁 : 𝐴 and 𝐵 are d-connected given 𝒁.
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Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-TailBlocks

Doesn’t  
Block Blocks

Blocks
Doesn’t  
Block

Doesn’t  
Block



Practice: Find d-separations



Summary

BN: DAG + Distribution

The distribution factorizes acording to the graph based on the 
Markov condition: Every variable is independent from its non-
descendants (in the graph) based on its parents (in the graph)

Markov Condition entails some independencies ≡ Factoriazation 
𝑃 𝑋!, … , 𝑋" = ∏𝑃(𝑋#|𝑃𝑎 𝑋# )

D-separation allows us to read the independencies from the graph.

If 𝐼 𝐺 ⊆ 𝐼(𝑃) then 𝐺 is an I-Map for 𝑃



I-map

q Defn : Let P be a distribution over X. We define I(P) to be the set of  
independence assertions of the form (X ^ Y | Z) that hold in P (however  
how we set the parameter-values).

q Defn : Let K be any graph object associated with a set of  
independencies I(K). We say that K is an I-map for a set of  
independencies I, if 𝐼(𝐾) ⊆ 𝐼

q We now say that G is an I-map for P if G is an I-map for I(P):
𝐼 𝐺 ⊆ 𝐼(𝑃)

© Eric Xing @ CMU, 2005-2020



Facts about I-map

q For G to be an I-map of P, it is necessary that G does 
not mislead us  regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may  have 
additional independencies that are not reflected in G

q Example:

P1
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P2



Facts about I-map

q For G to be an I-map of P, it is necessary that G does 
not mislead us  regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may  have 
additional independencies that are not reflected in G

q Example:

P1
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P2

The complete 
graph is trivially an 
I-map for any 
distribution



Minimal I-map

q Defn : Let P be a distribution over X. We define I(P) to be the set of  
independence assertions of the form (X ^ Y | Z) that hold in P (however  
how we set the parameter-values).

q Defn: Let K be any graph object associated with a set of  
independencies I(K). We say that K is an I-map for a set of  
independencies I, if 𝐼(𝐾) ⊆ 𝐼

q A graph G is a minimal I-map for I if 
q it is an I-map for I, 
q The removal of even a single edge from G renders it not an I-map.



Constructing minimal I-maps

L; S; G; I; D; L; D; S; I; G



Constructing minimal I-maps

L; S; G; I; D; L; D; S; I; G



Find a minimal I-map

𝑃(𝑥, 𝑦, 𝑧) = +1/12 𝑥 ⊕ 𝑦⊕ 𝑧 = false
1/6 𝑥 ⊕ 𝑦⊕ 𝑧 = true

X Y

Z



d-connection and conditional dependencies 

You want to know if A ∥ B|𝐙 in the JPD:
1. Find the paths from A to B in the graph 

(ignoring orientations).
2. If there exists no open path  given 
𝒁, then A ∥ B|𝐙.

3. Else?
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Fatigue

CVD

Levels of 
Protein X

Yellow 
Teeth

Smoking Medicine Y



Faithfulness
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MC

MC+FAITHFULNESS 𝐷𝑆𝑒𝑝 𝐴, 𝐵 𝒁 in 𝐺ÛA ∥ B|𝐙 in 𝐽
𝐷𝑆𝑒𝑝 𝐴, 𝐵 𝒁 in 𝐺ÞA ∥ B|𝐙 in 𝐽

Faithfulness Condition:
Independences stem only from the causal structure, not the 
parameterization of the distribution.
We say that the graph and the distribution are faithful to each other.

Independencies stem from the 
causal structure, are not accidental 

properties of the parameters



Faithfulness 
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Sun

Sunscreen

Melanoma

The parameters do not cancel each other out!



Faithfulness

Is it realistic?
Assume you are given a graph and you select the parameters of the 
conditional probability tables randomly following a Dirichlet distribution.
The probability you get a non-faithful BN is zero (Lebesque measure is 
zero).
Helpful to devise efficient asymptotically correct methods.
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[Meek. C.  UAI 1995]



Perfect map

q Defn : Let P be a distribution over X. We define I(P) to be the set of  
independence assertions of the form (X ^ Y | Z) that hold in P (however  
how we set the parameter-values).

q Defn: Let K be any graph object associated with a set of  
independencies I(K). We say that K is an I-map for a set of  
independencies I, if 𝐼(𝐾) ⊆ 𝐼

q We now say that G is an I-map for P if G is a perfect map for I(P):
𝐼 𝐺 = 𝐼(𝑃)



Faithfulness

Is it realistic?
Probable causes of non-faithfulness:

Too low associations are not detectable for finite samples.
Too high correlations (determinism or close-to-determinism).
Natural selection may be biasing towards creating non-faithful distributions in 
systems in nature (e.g.. cells)! 
Not all joint probability distributions have a faithful representation.

The probability of getting an almost non-faithful distribution is 
non-zero.
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Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) Í I(P).

"Completeness":
"Claim": For any distribution P that factorizes over G, if (X ^ Y | Z) Î I(P) then d-sepG(X; Y | Z).

Contrapositive of the completeness statement

q "If X and Y are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

q Is this true?
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Soundness and completeness

q Contrapositive of the completeness statement

q "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize  
over G."

q Is this true?

q No. Even if a distribution factorizes over G, it can still contain additional independencies 
that are not reflected in the structure

q Example: graph A->B, for actually independent A and B  
(the independence can be captured by some subtle way  
of parameterization)

q Thm: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y
are dependent in some distribution P that factorizes over G.

© Eric Xing @ CMU, 2005-2020 29



Uniqueness of BN

q Very different BN graphs can actually be equivalent, in that they encode  
precisely the same set of conditional independence assertions.

(X ^ Y | Z).

© Eric Xing @ CMU, 2005-2020 31



Markov Equivalence

q Defn : Two BN graphs 𝐺! and 𝐺! over X are I-equivalent or Markov Equivalent  if 
𝐼(𝐺!) = 𝐼(𝐺").

q The set of all graphs over X is partitioned into a set of mutually exclusive and exhaustive I-equivalence  
classes, which are the set of equivalence classes induced by the I-equivalence relation.

q Any distribution P that can be factorized over graphs (a), (b), or (c) can be factorized over the other.
q Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than  

an equivalent one.
q This observation has important implications with respect to our ability to determine the directionality of  

influence.
32



Markov Equivalence
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Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

CVD ∥ Yellow Teeth|Smoking CVD ∥ Yellow Teeth|Smoking

CVD ∥ Yellow Teeth|Smoking

Markov Condition entails the same 
conditional independence for all 
three graphs. 



Markov Equivalence
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Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

CVD ∥ Yellow Teeth|Smoking CVD ∥ Yellow Teeth|Smoking

CVD ∥ Yellow Teeth|Smoking

• The graphs are called Markov Equivalent.
• All Markov equivalent graphs denote a

Markov equivalence class (MEC).
• We use [G] to denote the MEC of G.



Markov Equivalence
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Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

Smoking

Yellow Teeth CVD

CVD ∥ Yellow Teeth|Smoking CVD ∥ Yellow Teeth|Smoking

CVD ∥ Yellow Teeth|Smoking

Markov Equivalent Graphs share
- the same skeleton (adjacencies).
- the same unshielded colliders



Characterization of the Markov Equivalence Class
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• v-structure
• not a v-structure

• Unshielded collider: A 
collider (X-Y-Z) where the 
endpoints (X, Z) are NOT 
adjacent.

• AKA v-structure.



Pattern DAGs
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• Represents a class of Markov 
Equivalent DAGs.

• Has the same edges as 
every DAG in the class.

• Has only orientations 
(arrows) shared by all the 
DAGs in the class.

• Orient the PDAG as a DAG 
without creating a new 
collider or directed cycle!

PDAG

Not all configurations are possible!



Pattern DAGs
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• You can still “read” all conditional independencies entailed by the Causal Markov 
Condition in the graph using d-separation.

PDAGDAG



Practice

How many networks are equivalent to the simple directed 
chain 𝑋* → 𝑋+ → ⋯ → 𝑋,



Practice

Which edges can you reverse?



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Pa(X)

Ch(X)



Markov Boundary

CoPa(X)

𝑋 conditionally independent of all other nodes, given its Markov blanket

The minimal Markov blanket is the Markov boundary

Q: Why co-parents?
A: Explaining away



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x)  
that is Markov w.r.t. graph
has a Markov blanket given by:

For any :

Markov boundaries are used to simplify inference and distribute 
computation  (e.g. Gibbs sampler, variational inference, etc.)



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x)  
that is Markov w.r.t. graph
has a Markov blanket given by:

For any :

They also lead to the optimal prediction of 𝑋 (for a proper scoring rule)  



Practice


