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Probabilistic Graphical Models

Directed graphical models
* Bayes Nets
» Conditional dependence

Undirected graphical models
* Markov random fields (MRFs)
* Factor graphs



Directed Graphical Models

A Directed Acyclic Graph A joint Probability Distribution

P(A,B,C,D,E,F,G,H)

Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



From Markov Condition to Factorization
A Directed Acyclic Graph A joint Probability Distribution

P(A,B,C,D,E,F,G,H)

P(A, .., H)
= || PwiPas)

Ve{A,. H)

Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



The d-separation criterion

Open (d-connecting) paths :
A path is d-connecting given Z iff
every collider on the pathisin Z or has a

descendantin Z
AND
every non-collider on the path is not in Z.

Otherwise, the path is blocked (d-separating).

The same path can be
d-connecting given Z4,
d-separating given Z



The d-separation criterion

Algorithm to determine all independencies that are entailed by
the MC.

Conditional independencies in the joint distribution can be

decided based on the absence of open paths in the graph:

Open paths are called d-connecting paths (given a set of variables).

If no open path exists, the endpoints are d-separated (given the set of
variables).

Otherwise, the endpoints are d-connected (given the set of variables)

Notation: dsep(A4, B|Z): A and B are d-separated given Z.
dcon(A4, B|Z): A and B are d-connected given Z.



Bayes Ball Algorithm

Tall-to- Tail
Blocks
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Practice: Find d-separations

(a) (b)

o e



Summary

BN: DAG + Distribution
The distribution factorizes acording to the graph based on the
Markov condition: Every variable is independent from its non-

descendants (in the graph) based on its parents (in the graph)

Markov Condition entails some independencies = Factoriazation
P(X1, ..., Xn) = [IP(X;|Pa(X;))

D-separation allows us to read the independencies from the graph.

If I(G) € I(P) then G is an |-Map for P



l-map

Q Defn : Let Pbe a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y| Z) that hold in P (however
how we set the parameter-values).

a Defn : Let K be any graph object associated with a set of
independencies |(K). We say that K is an /-map for a set of
independencies |, if I(K) €S |

o We now say that G is an I-map for Pif G is an [-map for I(P):

I1(G) S I(P)
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Facts about I-map

o For G to be an I-map of P, it is necessary that G does
not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have
additional independencies that are not reflected in G

o Example:
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Facts about I-map

o For G to be an I-map of P, it is necessary that G does
not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have
additional independencies that are not reflected in G

o Example:
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Minimal |-map

Q Defn : Let Pbe a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y| Z) that hold in P (however
how we set the parameter-values).

a Defn: Let K be any graph object associated with a set of
independencies |(K). We say that K is an /-map for a set of
independencies |, if I(K) €S |

o Agraph G is a minimal I-map for | if
o itis an |-map for |,
o The removal of even a single edge from G renders it not an I-map.



Constructing minimal |-maps

Algorithm 3.2 Procedure to build a minimal I-map given an ordering
Procedure Build-Minimal-I-Map (

D ST X,, /I an ordering of random variables in X’
T /I Set of independencies
)
1 Set G to an empty graph over X
2 fori=1,....n
3 U+ {Xy,...,- X;_1} Il U is the current candidate for parents of X,
4 for U’ C {X1,..... Xi 1}
5 if U cU and (X; L {X,,...,. X; 1} —U"|U") € I then
6 U+ U’
7 /I At this stage U is a minimal set satisfying (X. L
{X1,...,.X:i1} -U | U)

8 // Now set U to be the parents of X
9 for X; e U
10 Add ‘X’j — X;to @G
11 return G

L;S;, G; ;D

L;D;S; |, G



Constructing minimal |-maps

Algorithm 3.2 Procedure to build a minimal I-map given an ordering

Procedure Build-Minimal-I-Map (
Xi.....X,, /Il an ordering of random variables in X’ Q o
Z /I Set of independencies

)

Set G to an empty graph over X @

fori=1.....n
U+ {X,,...,X;_1} [/lU is the current candidate for parents of X,
for U' C {X1,...,Xi 1}
if U' cU and (X; L {X,,..... X; 1}-U"|U") €T then e
U+ U’
Il At this stage U is a minimal set satisfying (X, L
{X1,.... Xsi1} - U | U)
/I Now set U to be the parents of X
for X; e U
10 Add ‘X’J‘ - X;t0G

return G Q o

=1 S U = W -

[{=lieo]

L;S;, G; ;D



Find a minimal I-map

_|1/12 x Py D z = false
P(x,y,z)—{1/6 x Dy dz= true




d-connection and conditional dependencies

You want to know if A_ll B|Z in the JPD: Smoking Medicine Y
1. Find the paths from A to B in the graph §\<é:is E’,
(ignoring orientations). =N % @
2. If there exists no open path given |
Z, then A B|Z. eruow S8 Levelso
Teeth g )}* Protein X

3. Else?

Fatigue



Faithfulness

Faithfulness Condition:

Independences stem only from the causal structure, not the
parameterization of the distribution.

We say that the graph and the distribution are faithful to each other.

MC DSep(A,B|Z) in G=>ALB|Z in ]
MC+FAITHFULNESS  DSep(4,B|Z) in GoALB|Zin ]

Independencies stem from the
causal structure, are not accidental
properties of the parameters




Faithfulness

Melanoma




Faithfulness

s it realistic?

Assume you are given a graph and you select the parameters of the
conditional probability tables randomly following a Dirichlet distribution.
The probability you get a non-faithful BN is zero (Lebesque measure is
Zero).

Helpful to devise efficient asymptotically correct methods.

411

Strong completeness and faithfulness in Bayesian networks

Christopher Meek
Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA 15213*

Abstract Broadly speaking, there are two types of approaches

to learning Bayesian networks; the scoring approaches

[ IVI e e k C U A I 1 9 9 5 ] A completeness result for d-separation ap- (Bayesian, Likelihood and MDL; see Cooper and Her-
° ° plied to discrete Bayesian networks is pre- skovits 1992, Heckerman et al. 1994, Sclove 1994 and

sented and it is shown that in a strong Eouﬁszil%{i)ﬂm}d the inf‘el‘)g‘lg\t‘-ﬂf; *’K{Pl"OSChﬂf (see



Perfect map

Q Defn : Let Pbe a distribution over X. We define I(P) to be the set of
independence assertions of the form (X L Y| Z) that hold in P (however
how we set the parameter-values).

a Defn: Let K be any graph object associated with a set of
independencies |(K). We say that K is an /-map for a set of
independencies |, if I(K) €S |

o We now say that G is an |I-map for Pif G is a perfect map for I(P):

I1(G) = I(P)



Faithfulness

s it realistic?

Probable causes of non-faithfulness:
Too low associations are not detectable for finite samples.
Too high correlations (determinism or close-to-determinism).

Natural selection may be biasing towards creating non-faithful distributions in
systems in nature (e.g.. cells)!

Not all joint probability distributions have a faithful representation.

The probability of getting an almost non-faithful distribution is
non-zero.



Soundness and completeness

D-separation is sound and "complete” w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) c I(P).

"Completeness":
"Claim": For any distribution P that factorizes over G, if (XLY]|Z) € I(P) then d-seps(X; Y| 2Z).

Contrapositive of the completeness statement

o "lIf Xand Y are not d-separated given Zin G, then X and Y are dependent in all
distributions P that factorize over G."
a Is this true?

26



Soundness and completeness

o Contrapositive of the completeness statement

o "lIf Xand Y are not d-separated given Zin G, then X and Y are dependent in all distributions P that factorize
over G."

o Is this true?

o No. Even if a distribution factorizes over G, it can still contain additional independencies
that are not reflected in the structure

o Example: graph A->B, for actually independent A and B
(the independence can be captured by some subtle way Al

. . U - -
of parameterization) a 8j 8(3
a . .0

O Thm: Let G be a BN graph. If Xand Y are not d-separated given Zin G, then Xand Y
are dependent in some distribution P that factorizes over G.

© Eric Xing @ CMU, 2005-2020 29



Uniqueness of BN

o Very different BN graphs can actually be equivalent, in that they encode
precisely the same set of conditional independence assertions.

(z) (x)

-
% A \_")
- */
S » X
(0)

_%Z_/":
(d)

(a) (b)
(XLY]|Z).

© Eric Xing @ CMU, 2005-2020
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Markov Equivalence

Q Defn : Two BN graphs G; and G, over X are [-equivalent or Markov Equivalent if
[(G1) = 1(Gy).

o The set of all graphs over X is partitioned into a set of mutually exclusive and exhaustive I-equivalence
classes, which are the set of equivalence classes induced by the I-equivalence relation.

(a) (b) (c) (d)

o Any distribution P that can be factorized over graphs (a), (b), or (c) can be factorized over the other.

o Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than
an equivalent one.

o This observation has important implications with respect to our ability to determine the directionality of
influence.

32



Markov Equivalence

[ Smoking ] [ Smoking ]

RN N

CVvD CVvD
CVDL | Smoking CvD L | Smoking
[ Smoking ] .. .
Markov Condition entails the same
conditional independence for all
) " three graphs.

CVD_L | Smoking



Markov Equivalence

[ Smoking ]

N\

CvD

CVD_L | Smoking

[ Smoking ]

N

CvD

CVD_L | Smoking

[ Smoking ]

N

CvD

CVD_L | Smoking

 The graphs are called Markov Equivalent.

* All Markov equivalent graphs denote a
Markov equivalence class (MEC).

e We use [G] to denote the MEC of G.
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Markov Equivalence

[ Smoking ] [ Smoking ]

RN N

CvD CvD
CVDL | Smoking CvD L | Smoking
Smoking .
[ ] Markov Equivalent Graphs share

- the same skeleton (adjacencies).

- the same unshielded colliders

] CvD

CVD_L | Smoking



Characterization of the Markov Equivalence Class

* Unshielded collider: A
collider (X-Y-Z) where the
endpoints (X, Z) are NOT
adjacent.

* AKA v-structure.

e v-structure
* nhot a v-structure



Pattern DAGs

Represents a class of Markov
Equivalent DAGs.

Has the Same edges as
every DAG in the class.

Has only orientations
(arrows) shared by all the

DAGS in the class.
Orient the PDAG as a DAG

without creating a new
collider or directed cycle!

PDAG
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Pattern DAGs

DAG PDAG

* You can still “read” all conditional independencies entailed by the Causal Markov
Condition in the graph using d-separation.



Practice

low many networks are equivalent to the simple directed
chain X; -» X, - - = X,



Which edges can you reverse?




Markov Blanket

X conditionally independent of all other nodes, given its Markov blanket

’——§




Markov Boundary

X conditionally independent of all other nodes, given its Markov blanket

The minimal Markov blanket is the Markov boundary

Q: Why co-parents?
A: Explaining away

» CoPa(X) «



Markov Blanket

X conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x)
that is Markov w.r.t. graph G = (V, £)
has a Markov blanket given by:

Mb(X) = Pa(X) U Ch(X) U CoPa(X)
Forany Y ¢ Mb(X) :
X 1Y | Mb(X)

Markov boundaries are used to simplify inference and distribute
computation (e.g. Gibbs sampler, variational inference, etc.)



Markov Blanket

X conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x)
that is Markov w.r.t. graph G = (V, &)
has a Markov blanket given by:

Mb(X) = Pa(X) U Ch(X) U CoPa(X)
Forany Y ¢ Mb(X) :
X 1Y | Mb(X)

They also lead to the optimal prediction of X (for a proper scoring rule)



Practice

(a) P(t' | d") P(tY)
(b) P(d" | t°) P(d")
(c) P(h* | €', 1) P(h' | eh)
) P(ct | %) P(ch)
(e) P(c' | h%) P(ch)
® P(ct | B°, £%) P(ct | h°)
(g P(d" | h',€%) P(d" | n")
1.1 70 1 1.1 40
SRRV :

+ +
o Gt > E
- + +

lest for high cholesterol

Figure 3.14 A Bayesian network with qualitative influences

T




