Point Estimates and Sampling Variability

Parameter estimation

- We are often interested in *population parameters*.
- Since complete populations are difficult (or impossible) to collect data on, we use *sample statistics* as *point estimates* for the unknown population parameters of interest.

Suppose we are interested in estimating the distribution of heights of adults in the US. Suppose we assume that adult height follows a Normal distribution with unknown mean μ and standard deviation 10cm

Suppose we randomly sample 1,000 adults from each state in the US. What is the best estimate for μ ?

Maximum Likelihood estimation

Assume that the first person we sample is 176cm.

If $\mu = 170$, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(176 - 170)^2}{2}} =$ If $\mu = 150$, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(176 - 150)^2}{2}} =$ For every possible $\mu \in (-\infty, \infty)$ $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(176 - \mu)^2}{2}} =$

Maximum Likelihood estimation

Assume that the first person we sample is 176cm.

If
$$\mu = 170$$
, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(176 - 170)^2}{2}} =$
If $\mu = 150$, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(176 - 150)^2}{10}} =$
For every possible $\mu \in (-\infty, \infty)$
 $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(176 - \mu)^2}{10}} =$

Maximum Likelihood estimation

Assume that the first person we sample is 176cm.

If $\mu = 170$, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(176 - 170)^2}{10}} = 0.033$ If $\mu = 150$, $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(176 - 150)^2}{10}} = 0.0013$ For every possible $\mu \in (-\infty, \infty)$ $f(x_1; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1(176 - \mu)^2}{10}}$

Likelihood for a single sample

Likelihood for multiple samples

For multiple samples $\{x_1, ..., x_n\}$

$$f(x_1, \dots, x_n | \mu, \sigma^2) = f(x_1 | \mu, \sigma^2) \dots f(x_n | \mu, \sigma^2) =$$

$$= \prod_{i=1}^{n} f(x_i | \mu, \sigma^2)$$

Likelihood for multiple samples

For multiple samples $\{x_1, \dots, x_n\}$

$$f(x_1, \dots, x_n | \mu, \sigma^2) = f(x_1 | \mu, \sigma^2) \dots f(x_n | \mu, \sigma^2) =$$

$$= \prod_{i=1}^{n} f(x_i | \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1(x_i - 170)^2}{2}}$$

Find
$$\hat{\mu} = argmax_{\mu}f(x_1, \dots, x_n|\mu)$$
,

Steps to MLE

- Compute the likelihood $L(x; \theta)$
- Usually, it is more convenient to work with $LL(x; \theta) = \log(L(x; \theta))$
- The log is monotonic:

if $\theta^* = argmax_{\theta}\log f(\theta)$, then $\theta^* = argmax_{\theta}f(\theta)$

- Maximize $LL(x; \theta)$:
 - Find θ^* for which $dLL(x;\theta)/d\theta$ is zero, check that it is a maximum.
 - If there is no closed form for $dLL(x;\theta)/d\theta$, use numerical methods.

MLE for normal with known σ^2

MLE for Uniform

- Let $X_1, ..., X_n$ be i.i.d. Uniform $[0, \theta]$, where $\theta > 0$. Find $\hat{\theta}$
- Let X_1, \dots, X_n be i.i.d. Uniform $[\theta, \theta + 1]$. Find $\hat{\theta}$

MLE for Uniform

- Let $X_1, ..., X_n$ be i.i.d. Uniform $[0, \theta]$, where $\theta > 0$. Find $\hat{\theta}$
- Let X_1, \dots, X_n be i.i.d. Uniform $[\theta, \theta + 1]$. Find $\hat{\theta}$

MLE estimator may not exist MLE estimator may not be unique

MLE for Bernoulli

Life rating in Greece. Greece has faced a severe economic crisis since the end of 2009. A Gallup poll surveyed 1,000 randomly sampled Greeks in 2011 and found that 25% of them said they would rate their lives poorly enough to be considered suffering.

Describe the parameter of interest. What is the value of the point estimate of this parameter?

Data: Would you rate your life poorly enough to be considered suffering?

X ₁	<i>X</i> ₂	X ₃	 X ₉₉₉	<i>X</i> ₁₀₀₀
Yes	No	No	 No	Yes

Point estimators are RVs

An estimator (MLE or otherwise) is an RV and a statistic (a function of the sample)

The estimator for the Bernoulli parameter is the sample mean $\overline{X_n} = \frac{\sum_i X_i}{n}$

Let's talk about the distribution of this RV

Desired properties of estimators

- Unbiased: $E[\widehat{\Theta}] = \theta$
 - Not always true for MLE estimator
- Consistent: $\Theta_n \rightarrow \theta$
 - True under mild conditions for MLE estimators
- Low Mean Squared Error
 - $E\left[\left(\widehat{\Theta}-\theta\right)^2\right] = Var(\widehat{\Theta}) + Bias(\widehat{\Theta})^2$ is low.

Let's poll!

- We want to poll how many drinks University students drink every week.
- Go to

https://polyhedron.math.uoc.gr/2223/moodle/ mod/data/view.php?id=428

• Fill in the number of drinks you drink per week.