
Probabilistic Graphical Models

Frequentist Estimation, 
Bayesian Networks



Frequentist Estimation
𝜃 is an unknown number

Each 𝜃 defines a different probabilistic model for your data

Some models explain your data better than others

𝑃 𝑥1, … , 𝑥𝑛; 𝜃 is the likelihood function (not a conditional 

probability since 𝜃 is not random

Estimation: Find '𝜃

The estimator is a random variable (why?)



Frequentist Estimation

Given 𝑋 = 𝑥, the maximum likelihood estimate (MLE) will be a function 

of x. 

Notation: 𝜃̂ = 𝛿(X#, … , …𝑋$)

Potentially confusing notation: Sometimes 𝜃̂ is used for both the 

estimator and the estimate.

• Note: The MLE is required to be in the parameter space Ω.

• Often it is easier to maximize the log-likelihood 𝐿(𝜃) = log(𝑓(𝑥 ∣ 𝜃)



Maximum Likelihood Estimation

• Let 𝑋 ∼ Binomial(𝜃). Find the maximum likelihood estimator of 𝜃. 
Say we observe 𝑋 = 3, what is the maximum likelihood estimate 
of 𝜃 ?

• Let 𝑋#, … , 𝑋% be i.i.d. 𝑁 𝜇, 𝜎& .

• Find the MLE of 𝜇 when 𝜎& is known.
• Find the MLE of 𝜇 and 𝜎& (both unknown).

• Let 𝑋#, … , 𝑋% be i.i.d. Uniform [0, 𝜃], where 𝜃 > 0. Find 𝜃̂
• Let 𝑋#, … , 𝑋% be i.i.d. Uniform [𝜃, 𝜃 + 1]. Find 𝜃̂



Quantifying Uncertainty

• Suppose 𝑋 = 𝑋#, … , 𝑋% is a random sample from 𝑓(𝑥 ∣ 𝜃).
• A function 𝑟 𝑋#, … , 𝑋% is a statistic (and a random variable).
• A sampling distribution: the distribution of a statistic (given 𝜃)
• Estimator '𝜃 is a statistic
• Can use the sampling distributions to compare different 

estimators and quantify uncertainty
• Can be used to estimate number of samples we need to limit bias
• Leads to definitions of new distributions, e.g.,  𝜒'& and 𝑡'.



Let 𝑋!, … , 𝑋" be a random sample from a 𝒩 𝜇, 𝜎# with unknown 𝜇, 𝜎#.
The sample mean and the sample variance are defined as
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If you know 𝜇 but not 𝜎2
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If you do not know 𝜇 or 𝜎2, then
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Quantifying Uncertainty
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Confidence interval

You can compute

• 𝛾 − Confidence Interval for 𝜇.
• 𝜇 is not random, the interval is.
• Interpretation: 𝛾 is the frequency we expect the random interval 

to include the true value, if we repeat the experiment multiple 
times



Properties of an Estimator
An estimator 4𝜃 = 𝑔 𝑋!, … , 𝑋" is a function of random variables 𝑋!, … , 𝑋" and 
therefore has a distribution. The distribution of 4𝜃 is called sampling 
distribution.

Unbiased estimator
An estimator is unbiased if 𝐸 4𝜃 = 𝜃. 𝐸 4𝜃 − 𝜃 is called the bias of the 
estimator.

Consistent estimator
An estimator is consistent if 8𝜃" →

1
𝜃.

Example
Bernoulli MLE 𝜃̂()* = ∑,2!" 𝑥,. Is it unbiased? Is it consistent?



Mean Squared Error of an Estimator

Mean squared error estimator

MSE(𝜃̂) = 𝔼 (𝜃̂ − 𝜃)!

= Var(𝜃̂ − 𝜃) + (𝔼[𝜃̂ − 𝜃])!

= Var(𝜃̂) + Bias!(𝜃̂)

For unbiased estimators, 𝑀𝑆𝐸( 4𝜃) = 𝑉𝑎𝑟( 4𝜃)



Sufficient Statistics

• A statistic: 𝑇 = 𝑟 𝑋#, … , 𝑋%
Def: Sufficient Statistics
Let 𝑋#, … , 𝑋% be a random sample from 𝑓(𝑥 ∣ 𝜃) and let 𝑇 be a statistic. 
If the conditional distribution of

𝑋#, … , 𝑋% ∣ 𝑇 = 𝑡
does not depend on 𝜃 then 𝑇 is called a sufficient statistic.

• The idea: Just as good to have the observed sufficient statistic as it is to 
have the individual observations of 𝑋#, … , 𝑋%.

• Can limit our search for a good estimator to sufficient statistics



Sufficient Statistics

• Theorem: Factorization Criterion
Let 𝑋!, … , 𝑋" be a random sample form 𝑓(𝑥 ∣ 𝜃) where 𝜃 ∈ Ω is unknown. A 
statistic 𝑇 = 𝑟 𝑋!, … , 𝑋" is a sufficient statistic for 𝜃 if and only if for all 𝐱 ∈ ℝ"
and all 𝜃 ∈ Ω, the joint pdf/pf 𝑓"(𝐱 ∣ 𝜃) can be factored as

𝑓"(𝐱 ∣ 𝜃) = 𝑢(𝐱)𝑣(𝑟(𝐱), 𝜃)

where function 𝑢 and 𝑣 are nonnegative.
• The function 𝑢 may depend on 𝐱 but not on 𝜃
• The function 𝑣 depends on 𝜃 but depends on 𝐱 only through the value of the 

statistic 𝑟(𝐱)

Both MLEs and Bayesian estimators depend on data only through sufficient 
statistics.



MLE vs Bayesian Estimation

MLE
Does not always exist
Is not always appropriate
Is not always unique

Bayes
More difficult computationally
Not a single point



Probabilistic Graphical Models

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



Two types of GMs

q Directed edges give causality relationships (Bayesian Network or 
Directed Graphical Model):

q Undirected edges simply give correlations between variables (Markov 
Random Field or Undirected Graphical model):
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)  
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}



Directed Graphical Models

A Directed Acyclic Graph

A B

C D E

F

G H

A joint Probability Distribution 

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻

𝑃 𝐴,… , 𝐻

= '
!∈{$,…,'}

𝑃(𝑉|𝑃𝑎) 𝑉 )

(Local) Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



Example: Expert systems

q Beinlich et al. 1989
q Encodes medical knowledge
q Patient monitoring system

q Measurements:
q Blood pressure 120/80 mmHg
q Heart rate 80/min
q Respiratory rate 10/min
q …

q Query:
q Pr(kinked tube=true | measurements) = ?

© Eric Xing @ CMU, 2005-2020 16



Example: The Dishonest Casino

q A casino has two dice:
q Fair die

q P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
q Loaded die

q P(1) = P(2) = P(3) = P(5) = 1/10
q P(6) = 1/2

q Casino player switches back-&-forth between  
fair and loaded die once every 20 turns

q Game:
q You bet $1
q You roll (always with a fair die)
q Casino player rolls (maybe with fair die, maybe  

with loaded die)
q Highest number wins $2 © Eric Xing @ CMU, 2005-2020 17



Puzzles regarding the dishonest casino

© Eric Xing @ CMU, 2005-2020 18

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
q How likely is this sequence, given our model of how the casino works?

q This is the EVALUATION problem

q What portion of the sequence was generated with the fair die, and what portion with the  
loaded die?

q This is the DECODING question

q How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino  
player change from fair to loaded, and back?

q This is the LEARNING question



Knowledge Engineering

q Picking variables
q Observed
q Hidden
q Discrete
q Continuous

q Picking structure
q CAUSAL
q Generative
q Coupling

q Picking Probabilities
q “Natural”
q Zero probabilities
q Orders of magnitudes
q Relative values

19



Hidden Markov Model

The underlying  
source:
Speech signal  
genome function  
dice

The sequence:
Phonemes  
DNAsequence
sequence of rolls

© Eric Xing @ CMU, 2005-2020 20

𝑥! 𝑥"𝑥#𝑥$

Y2 Y3Y1 YT...



Probability of a parse

q Given a sequence x = x1……xT
and a parse y = y1, ……,yT,

q To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT |yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

q Marginal probability:
q Posterior probability:

q We will learn how to do this efficiently (polynomial time)

åp(x) =
y y
p(x,y) =

p(y | x) = p(x,y) / p(x)

© Eric Xing @ CMU, 2005-2020 21
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Y2 Y3Y1 YT...



Bayesian Network

© Eric Xing @ CMU, 2005-2020 22

q A BN is a directed graph whose nodes represent the random variables and whose edges
represent direct influence of one variable on another.

q It is a data structure that provides the skeleton for representing a joint distribution
compactly in a factorized way;

q It offers a compact representation for a set of conditional independence assumptions
about a distribution;

q We can view the graph as encoding a generative sampling process executed by nature,
where the value for each variable is selected by nature using a distribution that depends
only on its parents. In other words, each variable is a stochastic function of its parents.



Bayesian Network: Factorization

i

in the graph.
where Xp is the set of parents of Xi, d is the number of nodes (variables)

i=1:d

Given a DAG, The most general form of the probability distribution that is  
consistent with the graph factors according to “node given its parents”:

P(X) =ÕP(Xi |Xp i )

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)  
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Specification of a directed GM

24

q There are two components to any GM:
q the qualitative specification (graph)
q the quantitative specificationon (jpd)

A B

C D E

F

G H

The graph dictates the
factorization of the joint 
probability distribution

𝑃 𝐴,… , 𝐻

= '
!∈{$,…,'}

𝑃(𝑉|𝑃𝑎) 𝑉 )



Specification of a directed GM

25

q There are two components to any GM:
q the qualitative specification (graph)
q the quantitative specification (jpd)

C D P(F | C,D)
0 0 0.9 0.1

1 0 0.2 0.8

0 1 0.9 0.1

1 1 0.01 0.99

A B

C D E

F

G H



Qualitative Specification

© Eric Xing @ CMU, 2005-2020 26

q Where does the qualitative specification come from?

q Prior knowledge of causal relationships
q Prior knowledge of modular relationships
q Assessment from experts
q Learning from data
q We simply like a certain architecture (e.g. a layered graph)
q …



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

P(a,b,c.d) =  
P(a)P(b)P(c|a,b)P(d|c)

C

D
c0 c1

d0 0.3 0.5
d1 07 0.5
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Conditional probability tables (CPTs)
Quantitative Specification



A B

C

P(a,b,c.d) =  
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

© Eric Xing @ CMU, 2005-2020 24
P(
D|

C)

Conditional probability density func. (CPDs)
Qualitative Specification



Qualitative Specification

29

q Where does the qualitative specification come from?

q Prior knowledge of causal relationships
q Prior knowledge of modular relationships
q Assessment from experts
q Learning from data
q We simply like a certain architecture (e.g. a layered graph)
q …

q Graphs imply some conditional independencies. (wherever you got them)
q What does this mean?
q For every distribution that factorizes according to the graph



a

Are a and b independent ( )?

p(a,b,c) = p(a)p(b)p(c)

Implied Independencies.



p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies (fully connected graph)

Implied Independencies



Three interesting cases

Tail-to-tail

Head-to-tail

Head-to-head



Three interesting cases

For each case, consider two questions:



Case one (tail-to-tail)

This graph represents 𝑃 𝑎, 𝑏, 𝑐 = 𝑃 𝑐 𝑃 𝑎 𝑐 𝑃 𝑏 𝑐
To prove independence, we need to come up with a counter-

example 



Case one (tail-to-tail)



Case one (tail-to-tail) summary

Tail-to-tail case
With no conditioning, no independence (∃𝑃)
With conditioning, we have independence



Case two (head-to-tail)

This graph represents 𝑃 𝑎, 𝑏, 𝑐 = 𝑃(𝑎)𝑃 𝑎 𝑐 𝑃(𝑏|𝑐)



Case two (head-to-tail)



a b

c

Are a and b independent ( )?
Case three (head-to-head)



a b

c

p(a,b,c) = p(a)p(b)p(c|a,b)

Are a and b conditionally independent ( )?
Case three (head-to-head)



a b

c

Are a and b conditionally independent ( )?

Attempt at  
algebraic  

proof.

Unless the algebra  
reduces to something  

obviously false, we  
typically look for a  
counter example

Case three (head-to-head)



a b

c

a b

c

Phenomenon in Bayes networks known  
as explaining away

Flu Strep

Fever

Case three (head-to-head)



Summary

Bayesian networks: Graph (DAG)+JPD

JPD factorizes according to the factorization theorem

Factorization theorem implies a set of conditional 
independencies.

Next: A general algorithm for reading independencies from 
the graphs.



Shading & Plate Notation
Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj
D

Plates denote  
replication of  
random variables

Naïve
Bayes
Model

Features X are  
conditionally  
independent,  

given Y



Probability Model Bayes Net Joint Sample

Sample all nodes with no parents, then children, etc., to  
terminals. Can sample nodes at same level in parallel.

Example: Gaussian Mixture Model


