Probabilistic Graphical Models

Frequentist Estimation,
Bayesian Networks



Frequentist Estimation

@ is an unknown number
Each 0 defines a different probabilistic model for your data
Some models explain your data better than others

P(xq, ..., x,; 0) is the likelihood function (not a conditional

probability since 6 is not random

Estimation: Find 8

The estimator is a random variable (why?)



Frequentist Estimation

Given X = x, the maximum likelihood estimate (MLE) will be a function
of x.

Notation: § = §(Xq, ..., .. Xp)

Potentially confusing notation: Sometimes 6 is used for both the
estimator and the estimate.

e Note: The MLE is required to be in the parameter space ().

e Often it is easier to maximize the log-likelihood L(8) = log(f (x | 8)



Maximum Likelihood Estimation

Let X ~ Binomial(#). Find the maximum likelihood estimator of 6.
Say we observe X = 3, what is the maximum likelihood estimate
of 6 ?

Let X, ..., X,, beiid. N(u,o2).

Find the MLE of u when ¢* is known.
Find the MLE of 4 and o2 (both unknown).

Let X4, ..., X,, be i.i.d. Uniform [0, 8], where 8 > 0. Find 6
Let X4, ..., X,, be i.i.d. Uniform [6, 0 + 1]. Find



Quantifying Uncertainty

Suppose X = (X4, ..., X,,) 1s arandom sample from f(x | 8).

A function (X4, ..., X,,) is a statistic (and a random variable).

A sampling distribution: the distribution of a statistic (given )
Estimator 6 is a statistic

Can use the sampling distributions to compare different
estimators and quantify uncertainty

Can be used to estimate number of samples we need to limit bias
Leads to definitions of new distributions, e.g., 2 and t,,.



Quantifying Uncertainty

Let X, ..., X;,, be a random sample from a NV (u, 62) with unknown p, o2.

The sample mean and the sample variance are defined as
n
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Confidence interval

You can compute

_ cS, - CSy
P(Xn n1/2<ﬂ<Xn|n1/2)2y

e y — Confidence Interval for p.
e 1 1s not random, the interval is.

e Interpretation: y is the frequency we expect the random interval
to include the true value, if we repeat the experiment multiple
times



Properties of an Estimator

An estimator 8 = g(Xy, ..., X,,) is a function of random variables X, ..., X;, and
therefore has a distribution. The distribution of 8 is called sampling
distribution.

Unbiased estimator
An estimator is unbiased if E(8) = 0. E(8) — 6 is called the bias of the
estimator.

Consistent estimator
An estimator is consistent if 8, - 6.

Example
Bernoulli MLE 6, = Y% , x;. Is it unbiased? Is it consistent?



Mean Squared Error of an Estimator

Mean squared error estimator

MSE() = E[(6 — 6)?]
= Var(6 — 0) + (E[6 — 0])?
= Var(0) + Bias?(6)

For unbiased estimators, MSE(8) = Var(0)



Sufficient Statistics

o Astatistic: T =r(Xy, ..., X,)
Det: Sufficient Statistics

Let X, ..., X,, be arandom sample from f(x | 8) and let T be a statistic.
If the conditional distribution of

Xy, X, | T =t
does not depend on 0 then T is called a sufficient statistic.

e The idea: Just as good to have the observed sufficient statistic as it is to
have the individual observations of X3, ..., X,,.

e Can limit our search for a good estimator to sufficient statistics



Sufficient Statistics

e Theorem: Factorization Criterion
Let X4, ..., X, be arandom sample form f(x | 8) where 8 € Q is unknown. A
statistic T = r(Xy, ..., X,,) is a sufficient statistic for 6 if and only if for all x € R"
and all 6 € Q, the joint pdf/pf f,,(x | ) can be factored as

fnx10) =ux)v(r(x),0)
where function u and v are nonnegative.

e The function u may depend on x but not on 4

e The function v depends on 6 but depends on x only through the value of the
statistic r(x)

Both MLEs and Bayesian estimators depend on data only through sufficient
statistics.



MLE vs Bayesian Estimation

MLE

Does not always exist

Is not always appropriate
Is not always unique

Bayes
More difficult computationally
Not a single point



Probabilistic Graphical Models

Directed graphical models
* Bayes Nets
» Conditional dependence

Undirected graphical models
* Markov random fields (MRFs)
* Factor graphs



Two types of GMs

 Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

P(X1, X2, X3, X4, X5, X6, X7, X38)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(Xs| X3, X4) P(X7| X6) P(Xs| X5, X5)

 Undirected edges simply give correlations between variables (Markov
Random Field or Undirected Graphical model):

P(X1, X2, X3, X4, X5, X6, X7, X38)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(Xs, X3, X0)+TE(X7, X6)tE(Xs, X5, X6)}
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Directed Graphical Models
A Directed Acyclic Graph A joint Probability Distribution

P(A,B,C,D,E,F,G,H)

P(4,...,H)
= | [ PoiPasm)

Ve{A,. H)

(Local) Markov Condition:
Every variable is independent of its non-
descendants given its parents (in the graph)



Example: Expert systems

o Beinlich et al. 1989

o Encodes medical knowledge

o Patient monitoring system

o Measurements:

Blood pressure 120/80 mmHg
Heart rate 80/min

Respiratory rate 10/min

O 0O 0O O

0 Quéry:

o Pr(kinked tube=true | measurements) = ?

© Eric Xing @ CMU, 2005-2020

The ALARM Monitoring System:
A Case Study with two Probabilistic Inference Techniques
for Belief Networks

Ingo A. Beinlich, M.D., H. J. Suermondt, R. Martin Chavez,
Gregory F. Cooper, M.D., Ph.D.

Section on Medical Informatics,
Stanford University School of Medicine, Stanford, California, USA

Abstract ALARM (A Logical Alarm Reduction Mechanism) is a diagnostic applica-
tion used*to explore probabilistic reasoning techniques in belief networks. ALARM
implements an alarm message system for patient monitoring; it calculates proba-
bilities for a differential diagnosis based on available evidence. The medical knowl-
edge is encoded in a graphical structure connecting 8 diagnoses, 16 findings and
13 intermediate variables. Two algorithms were applied to this belief network: (1)
a message-passing algorithm by Pearl for probability updating in multiply con-
nected networks using the method of conditioning; and (2) the Lauritzen-
Spiegelhalter algorithm for local probability computations on graphical structures.
The characteristics of both algorithms are analyzed and their specific applications
and time complexities are shown.

Introduction

The goal of the ALARM monitoring system is to provide specific text messages ad-
vising the user of possible problems. This is a diagnostic task, and we have chosen
to represent the relevant knowledge in the language of a belief network (Fig.1).
This graphical representation [Pearl 86b] facilitates the integration of qualitative
and quantitative knowledge, the assessment of multiple faults, as required by our
domain, and nonmonotonic and bidirectional reasoning.

LV failure
Hypovolemia Anaphylaxis Pulm. Embolus
. n Anest/Analgesia Kicked
' P~ IntubationTyhe Disconnection
LVED @ PA G) )
Volume

Vent Machine

HR BP HR HR SAT
EKG

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (®), intermediate (Q) and

measurement (@) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-

diastolic volume, LV failure: left ventricular failure, MV: minute ventilation, PA Sat: pulmonary artery axygen satu-

ration, PAP: pul y artery pr wre, PCWP: pulmonary capillary wedge pr wre, Pres: breathing pressure, RR:
respiratory rate, TPR: total peripheral resistance, TV: tidal volume
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Example: The Dishonest Casino

o A casino has two dice:

Q Fair die
a P(1)=P(2)= P(3)= P(5)= P(6) = 1/6

0 Loaded die
a P(1)= P(2)= P(3)= P(5)=1/10
a P6)=1/2

o Casino player switches back-&-forth between
fair and loaded die once every 20 turns

o Game:
o You bet $1
o You roll (always with a fair die)

n Casino player rolls (maybe with fair die, maybe
with loaded die)

o Highest number wins $2  © Eric Xing @ cMU, 2005-202
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Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 6 6

QUESTION

o How likely is this sequence, given our model of how the casino works?
o Thisis the EVALUATION problem

o What portion of the sequence was generated with the fair die, and what portion with the
loaded die?
o Thisis the DECODING question

o How “loaded’ is the loaded die? How “fair” is the fair die? How often does the casino
player change from fair to loaded, and back?
o Thisis the LEARNING question

© Eric Xing @ CMU, 2005-2020
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Knowledge Engineering

Q Picking variables
Q Observed
O Hidden
O Discrete
Q Continuous

Q Picking structure
O CAUSAL
O Generative
O Coupling
Q Picking Probabilities
a “Natural”
O Zero probabilities
O Orders of magnitudes
O Relative values

19



Hidden Markov Model

The underlying
source:
Speech signal coo —>
genome function
dice
The sequence:
Phonemes
DNA sequence

sequence of rolls

© Eric Xing @ CMU, 2005-2020
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Probability of a parse

o Given a sequence x = xj...... XT
and aparsey= w, ...... , VT,
o Tofind how likely is the parse: G @

(given our HMM and the sequence)

p(X,y) =p(xi...... XTy Yy eeenny VT) (Joint probability)
=pO) plxi| y) pOr2| y1) p(x2| y2) ... p(yr| yr1) plxr| yr)
=pO1) P(2| y1) ... pyr| yr1) X p(xt| y1) p(xz|y2) ... plxr|yr)
=p1, ceeneey y1) p(xi...... XT| Y1y eennsy Y1)

a Marginal probability: p()=2_ p(x.y) =
o Posterior probability: p(y | x) = p(x,y)/ p(x)

o We will learn how to do this efficiently (polynomial time)

© Eric Xing @ CMU, 2005-2020
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Bayesian Network

o ABN is a directed graph whose nodes represent the random variables and whose edges
represent direct influence of one variable on another.

o Itis a data structure that provides the skeleton for representing a joint distribution
compactly in a factorized way;

o It offers a compact representation for a set of conditional independence assumptions
about a distribution;

o We can view the graph as encoding a generative sampling process executed by nature,
where the value for each variable is selected by nature using a distribution that depends
only on its parents. In other words, each variable is a stochastic function of its parents.

© Eric Xing @ CMU, 2005-2020
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Bayesian Network: Factorization

Given a DAG, The most general form of the probability distribution that is
consistent with the graph factors according to “node given its parents”:

PX)=]]Px|X,)

i=l:d

where X, is the set of parents of X;, d is the number of nodes (variables)
In the graph.

P(X1, X2, X3, X4, X5, X6, X7, X38)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(Xs| X3, X4) P(X7| X6) P(X3s| X5, X5)
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Specification of a directed GM

o There are two components to any GM:

a the qualitative specification (graph)
a the quantitative specificationon (jpd)

The graph dictates the
factorization of the joint
probability distribution

P(A, .., H)
= || PwIPesn)

VeE(A,.. H)
24



Specification of a directed GM

o There are two components to any GM:
a the qualitative specification (graph)
a the quantitative specification (jpd)

P(F|C,D)
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0.2 0.8
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N O 290
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Qualitative Specification

o Where does the qualitative specification come from?

Prior knowledge of causal relationships

Prior knowledge of modular relationships

Assessment from experts

Learning from data

We simply like a certain architecture (e.g. a layered graph)

U OO0 0 0 0O

© Eric Xing @ CMU, 2005-2020
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Quantitative Specification
Conditional probability tables (CPTs)
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Qualitative Specification
Conditional probability density func. (CPDs)

A~N(ua, 22)

B~N(, Zb)

C~N(A+B, %)

‘ D~N(pa+C, 24)
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Qualitative Specification

o Where does the qualitative specification come from?

Prior knowledge of causal relationships

Prior knowledge of modular relationships

Assessment from experts

Learning from data

We simply like a certain architecture (e.g. a layered graph)

U OO0 0 0 0O

o Graphs imply some conditional independencies. (wherever you got them)
o What does this mean?
a For every distribution that factorizes according to the graph

29



Implied Independencies.

Are a and b independent ( a L b )?

p(a,b,c) = p(a)p(b)p(c)



Implied Independencies

p(a,b,c) = p(a)p(bla)p(c|a,b)

Note there are no conditional independencies (fully connected graph)



Three interesting cases

Tail-to-tail Head-to-head
a C b
O—0O—0

Head-to-tail




Three interesting cases

O—0O—0O
For each case, consider two questions:

I) Isalb?
2) Isalblc ? (1e.cisobserved)



Case one (tail-to-tail)

a X b

This graph represents P(a, b,c) = P(c)P(alc)P(b|c)
To prove independence, we need to come up with a counter-
example



Case one (tail-to-tail)

. b a lblc

p(a, b,c) = p(c)p(a|c) p(b| c) (what the graph represents in general)
p(a,b c)=p(a‘c)p(b|c) (with ¢ observed)
This is the definition of a L b| c




Case one (tail-to-tail) summary

a X b alblc

Tail-to-tail case
With no conditioning, no independence (3P)
With conditioning, we have independence



Case two (head-to-tail)

O—O 'Qb a X b

This graph represents P(a, b,c) = P(a)P(alc)P(b|c)



Case two (head-to-tail)

b .C‘ d a1l b|c

p(a,b | c) = p(c (definition)
= p(a)p(;gz))p(bk) (from graph)
_ P(a)p(pc?!:))i((z))P(b\C) (Bayes on p(c|a))
~ o(ale)s (ol



Case three (head-to-head)
Are a and b independent ( a

b)?



Case three (head-to-head)
Are a and b conditionally independent ( ¢ L. b|c )?

p(a,b,c) = p(a)p(b)p(c|a,b)



Case three (head-to-head)
Are a and b conditionally independent ( ¢ L. b|c )?

p(ab.c) Unless the algebra
pladfe) = p(c reduces to something
Attempt at ~ p(a)p(b)p(c|ad) obviously false, we
algebraic a p(c) typically look for a
proof. = p(a‘c>p(b|c) (in general) counter example




Case three (head-to-head)

Flu Strep

Fever

Phenomenon in Bayes networks known
as explaining away




Summary

Bayesian networks: Graph (DAG)+JPD
JPD factorizes according to the factorization theorem

Factorization theorem implies a set of conditional
iIndependencies.

Next: A general algorithm for reading independencies from
the graphs.



Shading & Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Naive Y ‘ Features X are Y O

conditionally
Bayes independent,
Model givenY

Plates denote
replication of
random variables




Example: Gaussian Mixture Model

7 ~ Dirichlet(-)

Probability Model Baves Net Joint Sample
Hi ~ N()
o ~ Inv-Gamma(-) @ @

&
Zn | ™~ Cat(7) .
Yn ’ “ns Mz, Oz, ™ N(,Uzna O'gn) @ @ . .“ .

N K

Sample all nodes with no parents, then children, etc., to
terminals. Can sample nodes at same level in parallel.



