
Probabilistic Graphical Models

Bayesian Inference



Recap

Continuous Probability Distributions
Replace mass with density, sums with integrals
Probability of any single outcome is zero

Convergence of Random Variables

WLLN: The sample mean converges to the true mean

CLT: A scaled version of the sample mean converges in distribution to 
the standard normal



Why Graphical Models?

Data elements often have dependence arising from structure

Protein Structure

Pose Estimation

Exploit structure to simplify representation and computation



Why “Probabilistic”?

Stochastic processes have many sources of uncertainty

Randomness in  
State of Nature

Measurement  
Process

PGMs let us represent and reason about these in structured ways



What is Probability?

What does it mean that the probability of heads is ½ ?

Two schools of thought…

Frequentist Perspective
Proportion of successes (heads) in repeated  
trials (coin tosses)

Bayesian Perspective
Belief of outcomes based on assumptions  
about nature and the physics of coin flips

Neither is better/worse, but we can compare interpretations…



Frequentist & Bayesian Modeling

- Unknown (e.g. coin bias) - Data

Frequentist
(Conditional Model)

•

• is a non-random unknown  
parameter

is the sampling / data  
generating distribution

Bayesian
(Generative Model)

Prior Belief Likelihood

• is a random variable (latent)
• Requires specifying the  

prior belief



Posterior distribution is complete representation of uncertainty

Posterior computed by Bayes’ rule:

• Must specify a prior belief about coin bias
• Coin bias is a random quantity
• Interval can be reported in lieu of full  

posterior, and takes intuitive interpretation for a single trial
Interval Interpretation: For this trial there is a 95% chance that  

lies in the interval

Bayesian Inference

Prior Belief
Likelihood

Marginal Likelihood  
(more on this later)



Bayesian Inference Example

A recent home test states that you have high  
BP. Should you start medication?

Getty Images
About 29% of American adults have  
high blood pressure (BP). Home test  
has 30% false positive rate and no  

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:

Bayesian Inference Example

About 29% of American adults have  
high blood pressure (BP). Home test  
has 30% false positive rate and no  

false negative error.
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Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have  
high blood pressure (BP). Home test  
has 30% false positive rate and no  

false negative error.

What conclusions can be drawn from this calculation?
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Bayesian Inference

𝑃 𝜃 𝑋!, … , 𝑋" =
𝑃 𝑋!, … , 𝑋" 𝜃 𝑃(𝜃)

𝑃 𝑋!, … , 𝑋"
Posterior

Likelihood Prior

Normalizing Constant

Bayes Rule



Example: Bernoulli Distribution

𝑋!, … , 𝑋" follow a Bernoulli distribution
We want to estimate 𝑃(𝜃|𝑋!, … , 𝑋")

𝑃 𝜃 𝑋!, … , 𝑋" =
𝑃 𝑋!, … , 𝑋" 𝜃 𝑃(𝜃)

𝑃 𝑋!, … , 𝑋"

Assume we observe 𝑋!, … , 𝑋"# with ∑$%!"# 𝑥$ = 10



Posterior calculation requires the marginal likelihood,

• Also called the partition function or evidence
• Key quantity for model learning and selection
• Depends on the prior!
• NP-hard to compute in general (actually #P)

Example: Consider the vector 𝜃 = 𝜃!, … , 𝜃" with binary 𝜃# ∈ {0, 1}

Marginal Likelihood



Beta distribution

𝑋 has the Beta distribution with parameters 𝛼, 𝛽 > 0 if

𝑓(𝑥 ∣ 𝛼, 𝛽) = 0
!

/(1,2)𝑥
14!(1 − 𝑥)24! 𝑥 ∈ [0,1]
0 otherwise

Suitable for RV in [0,1]

Parameter space: 𝛼, 𝛽 > 0.

𝐸(𝑋) = 1
152

, Var(𝑋) = 12
(152)!(1525!)

.

B 𝛼, 𝛽 = ∫#
!𝑡$%!(1 − 𝑡)&%!𝑑𝑡 = 6 1 6 2

6 152



Computing the Posterior

𝑥

𝑓(𝜃|𝐷𝑎𝑡𝑎)

• Pick a prior, e.g., Beta(2,2) :

𝑓(𝜃) =
1

𝐵(2,2) 𝜃(1 − 𝜃)

• Compute the likelihood:

𝑓 𝑥!, … , 𝑥$% ∣ 𝜃 =E
#&!

$%

𝑓 𝑥# ∣ 𝜃 = 𝜃!%(1 − 𝜃)'%

• Compute the posterior up to a constant:

𝑓 𝜃 ∣ 𝑥!, … , 𝑥$% =
1

Β 2, 2 𝑓 𝑥!, … , 𝑥$%
𝑓(𝜃)𝑓 𝑥!, … , 𝑥$% ∣ 𝜃 =

𝐶𝜃!%(!(1 − 𝜃)'%(!

• C is a constant, 𝑓 𝜃 ∣ 𝑥!, … , 𝑥$% is a )Beta(12,32 distribution.

Beta Prior – Beta Posterior:
Beta is a conjugate distribution for the Bernoulli Likelihood



Conjugate Distributions
Gamma distribution

𝑋 has the Gamma distribution with parameters 𝛼, 𝛽 > 0 if

𝑓(𝑥 ∣ 𝛼, 𝛽) = 9
𝛽1

Γ(𝛼) 𝑥
14!𝑒42J 𝑥 > 0

0 otherwise

Suitable for RVs in (0,∞)

Parameter space: 𝛼, 𝛽 > 0.

𝐸(𝑋) = 1
2
, Var(𝑋) = 1

2!
.



Conjugate Distributions
Dirichlet distribution
𝑋 = 𝑋!, …𝑋K have the Dirichlet distribution with parameters 𝛼!, … , 𝑎L

𝑓(𝑥!, … , 𝑥L ∣ 𝛼!, … , 𝑎L) = 9
1

𝐵(𝛼)∏$%!
K 𝑥$

M"4!, 𝑥$ = 0,1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝐵 𝛼 =
∏ #&!

) Γ 𝛼#
Γ 𝛼%

, 𝛼% = ∑#&!) 𝛼#

Parameter space: 𝛼!, … , 𝑎L

𝐸 𝑋R = 1#
1$
, Var 𝑋R = 1%41"

1%!(1%5!)
.



How do we perform Bayesian Inference

• Pick a prior 𝑃(𝜃)
• Compute the likelihood 𝑃 𝑋!, … , 𝑋" 𝜃
• Compute the normalization constant
𝑃 𝑋!, … , 𝑋" = ∫𝑃 𝑋!, … , 𝑋" 𝜃 𝑓 𝜃 𝑑𝜃
(Also known as the marginal likelihood) 

• Difficult, not always necessary



Conjugate Distributions

Likelihood Prior Posterior

Bern(𝑝) Beta(𝛼, 𝛽) Beta 𝛼 + ∑$%!S 𝑥$, 𝛽 + N − ∑$%!S 𝑥$

Binom(N, 𝑝) Beta(𝛼, 𝛽) Beta 𝛼 + ∑$%!S 𝑥$, 𝛽 + N − ∑$%!S 𝑥$

Pois(𝜆) Gamma(𝛼, 𝛽) Gamma 𝛼 + ∑$%!S 𝑥$, 𝛽 + 𝑛

Expo(𝜆) Gamma(𝛼, 𝛽) Gamma 𝛼 + 𝑛, 𝛽 + ∑$%!S 𝑥$



Example: Gamma  - Exponential



Improper priors

Sometimes it is convenient to pick a prior that does not have a proper distribution. This is 
called an improper prior.

Example: “Uniform” Prior for Normal Distribution



Loss Function

𝐿 𝜃, 3𝜃 : Quantifies how far  your estimate 3𝜃 is from the true value 𝜃.

Examples of loss functions:
Mean Squared Error: 3𝜃 − 𝜃

'

Mean Absolute Error: 3𝜃 − 𝜃
Zero-one loss: 0, 𝑖𝑓 3𝜃 = 𝜃, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The loss is a random variable
We are looking for the estimate 3𝜃 that minimizes 𝐸(𝐿(𝜃, 3𝜃)|𝐷𝑎𝑡𝑎)



Bayesian Estimation

Task: produce an estimate of after observing data

Bayes estimators minimize expected loss function:

.

Example: Minimum mean squared error (MMSE):

Posterior mean always minimizes squared error.



Bayesian Estimation: More Examples

Minimum absolute error:

.Note: Same answer for linear function

Maximum a posteriori (MAP):
Very common to produce maximum probability estimates,



Bayesian Updating

Consider two conditionally independent observations and , their  
joint distribution is:

So, conditioned on : Update prior belief after seeing X1

This is proportional to the full posterior by Bayes’ rule:
Normalizer is marginal  

likelihood p(X1,X2)

In general, given conditionally independent :

Probability chain rule



Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over 𝜇

this gives the posterior

Completing the square over 𝜇, we see that



Bayesian Inference for the Gaussian (3)

Example:                                       for N = 0, 1, 2 and 10.



Bayesian Inference for the Gaussian (4)

Sequential Estimation

The posterior obtained after observing N -1 data points becomes the 
prior when we observe the N th data point.



Bayesian Inference for the Gaussian (5)

Now assume 𝜇 is known. The likelihood function for 𝜆 = 1/𝜎' is given by

This has a Gamma shape as a function of  𝜆 .



Bayesian Inference for the Gaussian (6)

Now we combine a Gamma prior,                      ,
with the likelihood function for ¸ to obtain

which we recognize as 𝐺𝑎𝑚 𝜆 𝛼! , 𝑏! with 



Bayesian Inference for the Gaussian (7)

If both 𝜇 and 𝜆 are unknown, the joint likelihood function is given by



Bayesian Inference for the Gaussian (8)
The Gaussian-gamma distribution

• Quadratic in 𝜇.
• Linear in 𝜆.

• Gamma distribution over 𝜆.
• Independent of 𝜇



Bayesian Inference for the Gaussian (9)

• 𝝁 unknown, Λ known: 𝑝(𝝁) Gaussian.
• 𝚲 unknown, 𝝁 known: 𝑝(𝚲) Wishart, 𝒲(𝚲 ∣ 𝐖, 𝜈) = 𝐵 ∣
𝚲(#$%$&)/)exp − &

)
Tr 𝐖$&𝚲 .

• 𝚲 and 𝝁 unknown: 𝑝(𝝁, 𝚲) GaussianWishart, 𝑝(
)

𝝁, 𝚲 ∣
𝝁*, 𝛽,𝐖, 𝜈 =

𝒩 𝝁 ∣ 𝝁*, (𝛽𝚲)$& 𝒲(𝚲 ∣ 𝐖, 𝜈)

Slides by Christopher Bishop



Likelihood and Odds Ratios

Which parameter value or is more likely to have  
generated the observed data ?

The posterior odds ratio is:

Prior Odds  
Ratio

Likelihood  
Ratio

Observe: the marginal likelihood cancels!



This is the posterior predictive distribution

Prediction

Can make predictions of unobserved before seeing any data,

Similar calculation to  
marginal likelihood

This is the prior predictive distribution

When we observe we can predict future observations ,



Posterior Marginal

In hierarchical models a subset of variables may be of interest

Normal distribution with random parameters:

Marginalize out nuisance variables:

Nuisance variable

Quantity of interest

Use of conjugate prior 
ensures analytic  

posterior



Posterior Summarization

Ideally we would report the full posterior distribution as the  
result of inference…but this is not always possible

Summary of Posterior Location:
Point estimates: mean (MMSE), mode, median (min. absolute  
error)

Summary of Posterior Uncertainty:
Credible intervals / regions, posterior entropy, variance

Bayesian analysis should report uncertainty when possible



Credible Interval

Def. For parameter  
interval

the  
satisfies,

a credible

Note: This is not unique -- consider the 95% intervals below:

Interval containing  
fixed percentage of  

posterior  
probability density.

[Source: Gelman et al., “Bayesian DataAnalysis”]



• Bayesian estimation minimizes expected loss function:

• Common estimators: Posterior mean à MMSE, Median à MAE
• Posterior uncertainty can be summarized by (not necessarily unique)  

credible intervals:

• Interpretation: For this trial parameter lies in interval with specified  
probability (e.g. 0.95)

Summary



• Marginal likelihood required for Bayesian inference, which can be hard:

• One exception is posterior odds (used in model selection, hypothesis  
testing, …)

• Posterior predictive can be used for model quality in unsupervised  
setting:

Summary


