Probabilistic Graphical Models

Continuous RVs WLLN CLT **Experiment** Spin continuous wheel and measure X displacement from 0 **Question** Assuming uniform probability, what is p(X = x)?

First, recall axioms of probability...

- 1. For any event $E, 0 \le P(E) \le 1$
- **2.** $P(\Omega) = 1$ and $P(\emptyset) = 0$
- 3. For any *finite* or *countably infinite* sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$

Sample space Ω is all points (real numbers) in

Let P(X = x) = π be the probability of any single outcome
 Let S(k) be the set of k elements in [0,1)

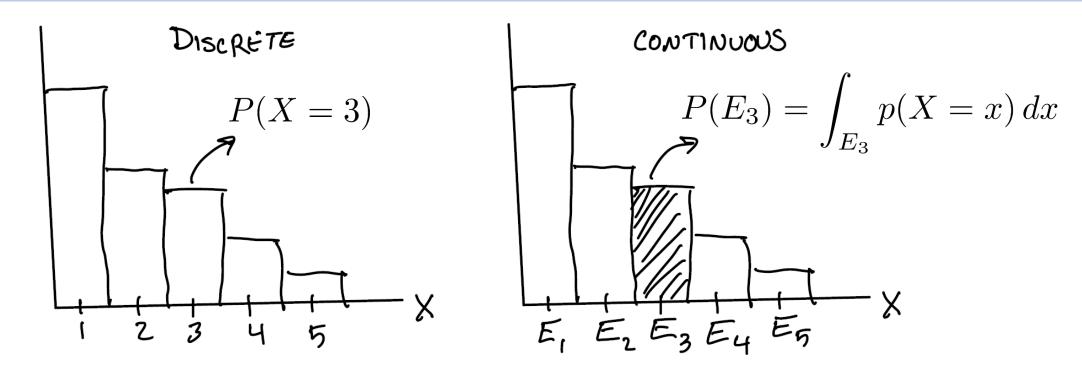
- Since $0 < P(x \in S(k)) < 1$ by axioms of probability, $k\pi < 1$ for any k
- For the effore: $\pi = 0$ and $P(x \in S(k)) = p(X = x) = 0$

What does this mean?

 \succ Let *E* be event that $x \in S(k)$

➤ In infinite sample space, an event may be **possible** but have zero "probability"
➤ Since $P(\bar{E}) = 1 - P(E) = 1$ events may have "probability" 1 but **not certain**

Assign probability to intervals, not individual values

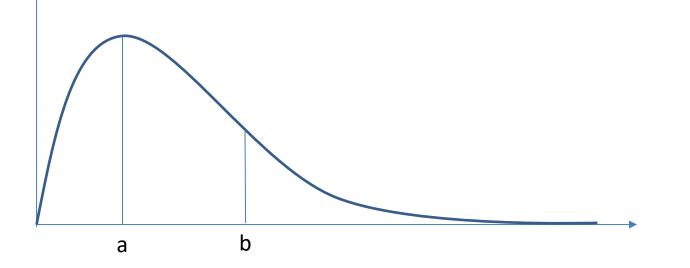


 \succ Events represented as intervals $a \leq X < b$ with probability,

$$P(a \le X < b) = \int_{a}^{b} p(X = x) \, dx$$

Specific outcomes have zero probability $P(X = 0) = P(x \le X < x) = 0$ Solutions have nonzero probability density p(X = x)

Probability Density Function



$$P(a \le x \le a + \epsilon) = \int_{a}^{a+\epsilon} p(x)dx = p(a) * \epsilon$$
$$P(\beta \le x \le \beta + \epsilon) = \int_{\beta}^{\beta+\epsilon} p(x)dx = p(\beta) * \epsilon$$

Most definitions for discrete RVs hold, replacing PMF with PDF

Two RVs X & Y are independent if and only if, p(x,y) = p(x)p(y) or $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$

Conditionally independent given Z iff, $p(x, y \mid z) = p(x \mid z)p(y \mid z)$ or $P(x, y \mid z) = P(x \mid z)P(y \mid z)$

Probability chain rule,

 $p(x,y) = p(x)p(y \mid x)$ and $P(x,y) = P(x)P(y \mid x)$

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x, y) \, dy$$

Expectation of a continuous random variable,

$$\mathbf{E}[X] = \int_{\mathcal{X}} x \cdot p(x) \, dx$$

Covariance of two continuous random variables X & Y,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])] = \int_{\mathcal{X}} \int_{\mathcal{Y}} (x - \mathbf{E}[X])(y - \mathbf{E}[Y])p(x,y) \, dx \, dy$$

Caution Some technical subtleties arise in continuous spaces...

For **discrete** RVs X & Y, the conditional

P(Y=y)=0 means impossible

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

is **undefined** when $P(Y=y) = 0 \dots$ no problem.

For **continuous** RVs we have,

$$P(X \le x \mid Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)}$$

but numerator and denominator are 0/0.

P(Y=y)=0 means improbable, but not impossible

Defining the conditional distribution as a limit fixes this...

$$\begin{split} P(X \leq x \mid Y = y) &= \lim_{\delta \to 0} P(X \leq x \mid y \leq Y \leq y + \delta) \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, y \leq Y \leq y + \delta)}{P(y \leq Y \leq y + \delta)} \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, Y \leq y + \delta) - P(X \leq x, Y \leq y)}{P(Y \leq y + \delta) - P(Y \leq y)} \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)}{P(y + \delta) - P(y)} \, du \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\left(\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)\right) / \delta}{(P(y + \delta) - P(y)) / \delta} \, du \\ &= \int_{-\infty}^{x} \frac{\frac{\partial^{2}}{\partial x \partial y} P(u, y)}{\frac{\partial}{\partial y} P(y)} \, du \quad = \int_{-\infty}^{x} \frac{p(u, y)}{p(y)} \, du \end{split}$$

Definition The conditional PDF is given by, $p(x \mid y) = \frac{p(x,y)}{p(y)}$

(Fundamental theorem of calculus) (Assume interchange limit / integral)

(Multiply by $rac{\delta}{\delta}=1$)

(Definition of partial derivative) (Definition PDF)

Mixed Variables

Let X be the consumption of Soda (in ml)

What does this look like?

Is this a pdf or a pmf?

CDF

Definition The <u>cumulative distribution function</u> (CDF) of a real-valued continuous RV X is the function given by,

 $F(x) = P(X \le x)$

> Can easily measure probability of closed intervals,

$$P(a \le X < b) = F(b) - F(a)$$

> If X is absolutely continuous (i.e. differentiable) then,

$$f(x) = \frac{dF(x)}{dx}$$
 and $F(t) = \int_{-\infty}^{t} f(x) dx$

Where f(x) is the probability density function (PDF)

 \blacktriangleright Typically use shorthand P for CDF and p for PDF instead of F and f

 $\begin{array}{l}
 \text{Uniform distribution on interval} [a, b], \\
 p(x) = \begin{cases}
 0 & \text{if } x \leq a, \\
 \frac{1}{b-a} & \text{if } a \leq x \leq b, \\
 0 & \text{if } b \leq x
 \end{array}
 \begin{array}{l}
 P(X \leq x) = \begin{cases}
 0 & \text{if } x \leq a, \\
 \frac{x-a}{b-a} & \text{if } a \leq x \leq b, \\
 1 & \text{if } b \leq x
 \end{array}
 \begin{array}{l}
 \hline
 \end{array}$

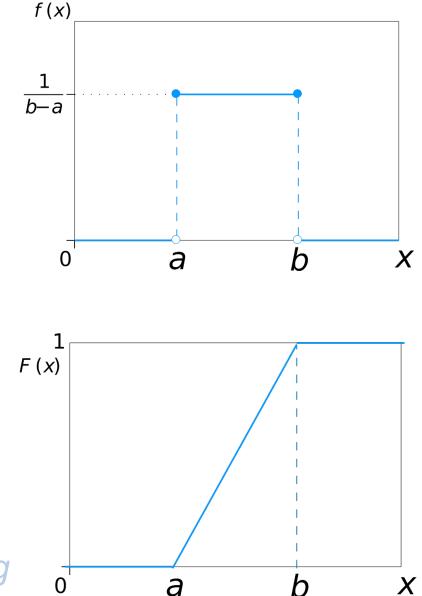
Say that $X \sim U(a, b)$ whose moments are,

$$\mathbf{E}[X] = \frac{b+a}{2}$$
 $\mathbf{Var}[X] = \frac{(b-a)^2}{12}$

Suppose $X \sim U(0,1)$ and we are told $X \leq \frac{1}{2}$ what is the conditional distribution?

$$P(X \le x \mid X \le \frac{1}{2}) = U(0, \frac{1}{2})$$

Holds generally: Uniform closed under conditioning



Exponential distribution with scale λ ,

$$p(x) = \lambda e^{-\lambda x}$$
 $P(x) = 1 - e^{-\lambda x}$

for X>0. Moments given by,

$$\mathbf{E}[X] = \frac{1}{\lambda} \qquad \qquad \mathbf{Var}[X] = \frac{2}{\lambda^2}$$

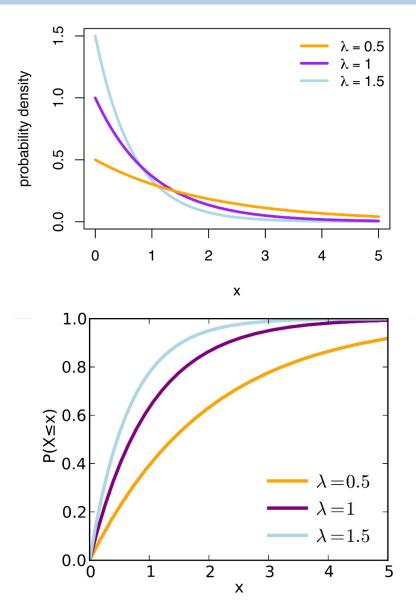
Useful properties

- Closed under conditioning If $X \sim \text{Exponential}(\lambda)$ then,

 $P(X \ge s+t \mid X \ge s) = P(X \ge s) = e^{-\lambda s}$

• Minimum Let X_1, X_2, \ldots, X_N be i.i.d. exponentially distributed with scale parameters $\lambda_1, \lambda_2, \ldots, \lambda_N$ then,

 $P(\min(X_1, X_2, \dots, X_N)) = \text{Exponential}(\sum_i \lambda_i)$



Gaussian (a.k.a. Normal) distribution with mean mean (location) μ and variance (scale) σ^2 parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

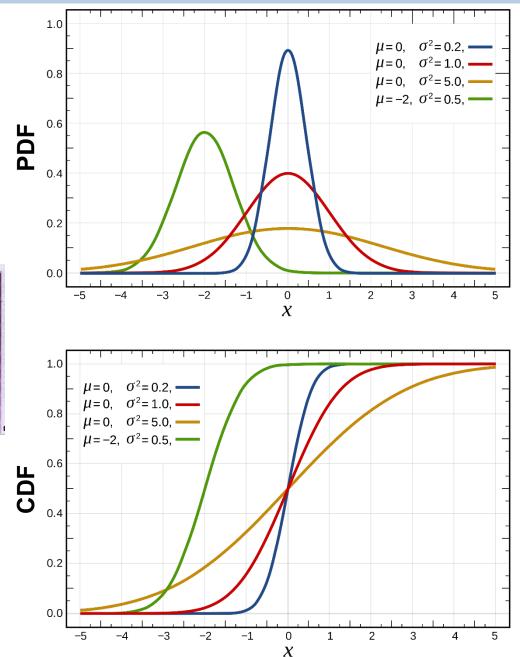
We say
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 .

Useful Properties

• Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2) \qquad Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$$
$$X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

- Closed under linear functions (a and b constant): $aX+b\sim \mathcal{N}(a\mu_x+b,a^2\sigma_x^2)$

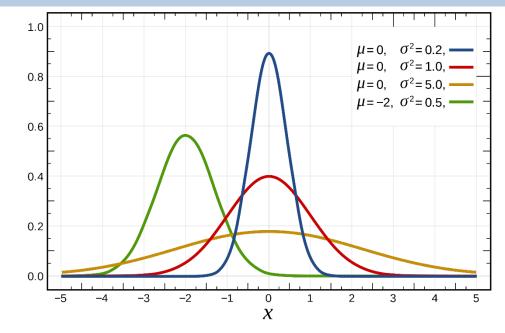


Computing Probabilities Using the Normal CDF

Normal Variables are very common (for reasons we will discuss very soon)

We often want to compute $P(X \le a)$ for $X \sim N(\mu, \sigma^2)$

 $\Phi(\alpha)$ is tabulated at the end of all statistical books.



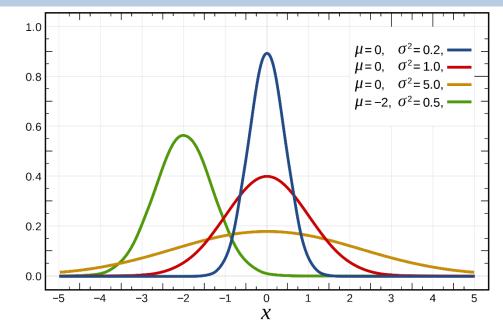
Computing Probabilities Using the Normal CDF

Normal Variables are very common (for reasons we will discuss very soon)

We often want to compute $P(X \le a)$ for $X \sim N(\mu, \sigma^2)$

 $\Phi(\alpha)$ is tabulated at the end of all statistical books.

$$P(X \le a) = P(\frac{X-\mu}{\sigma^2} \le \frac{a-\mu}{\sigma^2}) = P\left(Z \le \frac{a-\mu}{\sigma^2}\right) = \Phi(\frac{a-\mu}{\sigma^2})$$



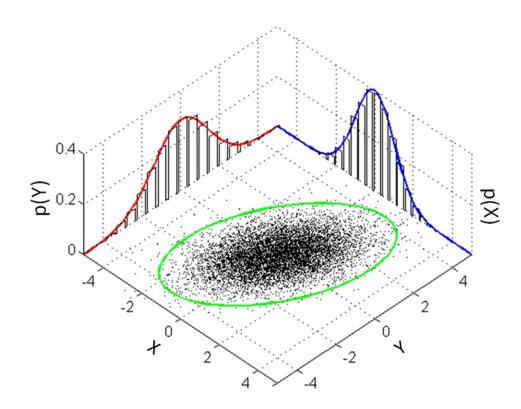
Multivariate Gaussian On RV $X \in \mathcal{R}^d$ with mean $\mu \in \mathcal{R}^d$ and positive semidefinite covariance matrix $\Sigma \in \mathcal{R}^{d \times d}$,

$$p(x) = |2\pi\Sigma|^{-1/2} \exp{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

A matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric positive (semi-) definite if $A = A^{\top}$, and

$$v^{\mathsf{T}} A v \ge 0 \forall v \in \mathbb{R}^n.$$

Equivalent statement: All eigenvalues of the symmetric matrix *A* are non-negative.



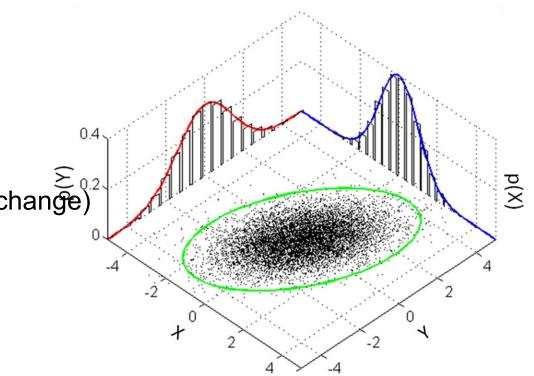
Useful Properties

- Closed under additivity (same as univariate case)
- Closed under linear functions,

 $AX + b \sim \mathcal{N}(A\mu_x + b, A\Sigma A^T)$

Where $A \in \mathcal{R}^{m \times d}$ and $b \in \mathcal{R}^{m}$ (output dimensions may change)

• Closed under conditioning and marginalization



Sampling

Assume that we have a random variable X representing height of male people in Crete.

Let's say that $X \sim N(\mu, \sigma^2)$

We draw N random samples from that distribution –i.i.d.

This is like drawing $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$

Problems with sampling (i.i.d) -Sampling without replacement -Sampling biases

Sample Mean

Sample mean:

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

What is the expectation of the sample mean? What is the variance of the sample mean?

What is the distribution of the sample mean?

Sequence of Random Variables

A sequence of random variables is a sequence of functions.

Example: Toss a fair coin once. Define

$$X_n = \begin{cases} \frac{1}{n+1}, & if heads \\ 1, & otherwise \end{cases}$$

a. Find the PMF and CDF of X_n for n = 1, 2, 3, ...b. As $n \to \infty$, what does $F(X_n)$ look like? c. Are they independent?

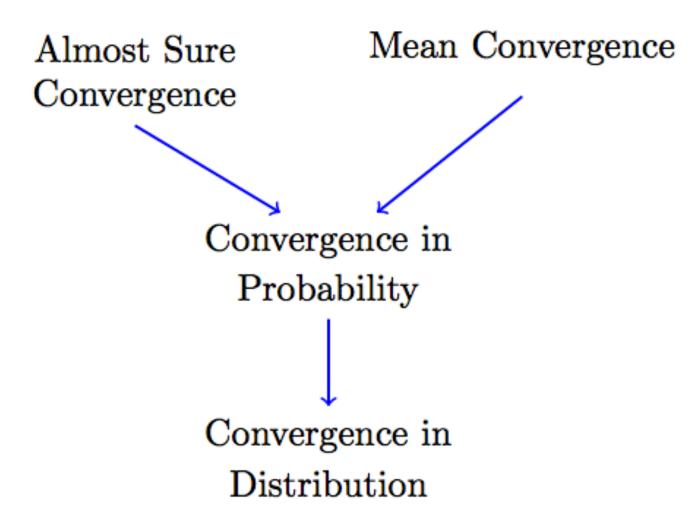
Sequence of Random Variables

A sequence of random variables is a sequence of functions.

Example: Toss a fair coin forever. Define $X_n = \begin{cases} 1, & if \ n-th \ toss \ is \ heads \\ 0, & otherwise \end{cases}$

a. Find the PMF and CDF of X_n for n = 1, 2, 3, ...

Convergence of RVs



Convergence In Probability

Arithmetic Convergence	Convergence in Probability
Sequence a_n of numbers converges to number l	Sequence X_n of random variables converges to random variable X
$\lim_{n \to \infty} \alpha_n = l \text{ or } \alpha_n \to l$	$X_n \xrightarrow{p} X$
a_n gets arbitrarily close to l	The probability distribution of $ X_n - X $ gets more concentrated around 0.
$\forall \epsilon > 0, \exists n_o: \forall n > n_0 \ \alpha_n - l < \epsilon$	$\forall \epsilon > 0, \lim_{n \to \infty} P(X_n - X < \epsilon) = 1$

A sequence of random variables X_1, X_2, X_3, \cdots converges in distribution

to a random variable X, shown by $X_n \xrightarrow{d} X$, then

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x),$$

for all x at which $F_X(x)$ is continuous.

Weak Law of Large Number

Draw n samples from a distribution with $E[X] = \mu$

Let \overline{X}_n be the sample mean

The sample mean is an RV

The sample means for n = 1, 2, ..., form a sequence of random variables.

Weak law of large numbers:

$$\overline{\mathbf{X}}_{\mathbf{n}} \xrightarrow{p} \mu$$

Central Limit Theorem

• $S_n = \sum_{i=1}^n X_i$, mean $n\mu$, variance $n\sigma^2$.

•
$$\bar{X}_n = \frac{S_n}{n}$$
, mean μ variance $\frac{\sigma^2}{n}$.

•
$$\frac{S_n}{\sqrt{n}}$$
, mean $\mu\sqrt{n}$, variance σ^2

•
$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}$$
, mean 0, variance 1.

Central Limit Theorem

Let $X_1, X_2, ..., X_n$ be *i.i.d.* random variables with expected value $E[X_i] = \mu < \infty$ and variance $0 < Var(X_i) = \sigma^2 < \infty$.

Then, the random variable $Z_n = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma}$ converges in distribution to the standard normal random variable as *n* goes to infinity:

$$\lim_{n \to \infty} P(Z_n \le x) = \Phi(x), \text{ for all } x \in \mathbb{R}$$

CLT - Applications

- You are doing a poll on "ratio of people agreeing with s".
- True ratio: p, estimate: \overline{X}_n after asking n people.
- You want $|\bar{X}_n p|$ to be small (e.g., less than 1%)
- You want to estimate

$$P(|\bar{X}_n - p| \ge 0.01) \le 0.05$$

Apply CLT:

Recap

Random Variables can be discrete or continuous

Often, we describe their distributions using families of parametric probability distributions $P(x; \theta)$

- The height of a student is approximately normal with mean θ_1 and some variance θ_2
- The number of people that have a disease out of a group of N people follows the Binomial(N, θ) distribution.

In practice, we do not know $\boldsymbol{\theta}$

Statistical Inference

What can we infer about $\boldsymbol{\theta}$ given the observed data?

Assuming we observe random variables $X_1, ..., X_n$ following some distribution with parameter θ , what conclusions can we draw about parameter θ ?

Example

Say I take a random sample of 100 people and test them all for a disease. If 3 of them have the disease, what can I say about θ = the prevalence of the disease in the population?

Tasks

- Point Estimation (estimate θ)
- Estimate confidence bounds for my estimate
- Hypothesis testing (is $\theta > 0.2$)?
- Prediction: For a given person, if know that their age/comorbidities/lifestyle habbits, can I predict their probability of having the disease?

Approaches to Statistical Inferences

Frequentist approach

Parameters are numbers, I will try to identify the most likely number given my data.

Bayesian Approach

Parameters are numbers, but I have uncertainty about them, so I will treat them like random variables, that have distributions.

Next: Point estimation with Frequentist/Bayesian approach