Random Variables

Random Variables

Definition A random variable $X(\omega)$ for $\omega \in \Omega$ is a real-valued function $X: \Omega \rightarrow R$.

A discrete random variable takes on only a finite or countably infinite number of values. A continuous variable takes uncountably infinite number of values.

- Discrete RVs have probability mass functions
- Continuous RVs have probability density functions.
- To find the pmf of a discrete RV we need:
- The support of the RV. (possible values x)
- The probabilities $P(X=x)$ for every x in the support.

Example

What is the distribution of the sum of two dice?

- The support of the RV. (possible values x):
- The probabilities $P(X=x)$ for every x in the support.:

Joint Distributions

	1	2	3	4	
3	$1 / 20$	$2 / 20$	$2 / 20$	$2 / 20$	$7 / 20$
2	$2 / 20$	$4 / 20$	$1 / 20$	$1 / 20$	$8 / 20$
1	$0 / 20$	$2 / 20$	$0 / 20$	0	$2 / 20$
	0	$0 / 20$	$1 / 20$	$2 / 20$	0
	$3 / 20$	$9 / 20$	$5 / 20$	$3 / 20$	

X :Grade
$Y:$ Number of times in NHMI

Joint Distribution:
$P_{X, Y}(x, y)=P(X=x, Y=y)$ for all x, y
$\sum_{x} \sum_{y} P_{X, Y}(x, y)=1$
Marginal Distribution:
$P_{X}(x)=\sum_{y} P_{X, Y}(x, y)$ for all x
Conditional :
$P_{X \mid Y}(x \mid y)=\frac{P_{X, Y}(x, y)}{P_{Y}(y)}$ for all x

Joint Distributions

X :Grade
$Y:$ Number of times in NHMI

Joint Distribution:
$P_{X, Y}(x, y)=P(X=x, Y=y)$ for all x, y
$\sum_{x} \sum_{y} P_{X, Y}(x, y)=1$
Marginal Distribution:
$P_{X}(x)=\sum_{y} P_{X, Y}(x, y)$ for all x
Conditional :
$P_{X \mid Y}(x \mid y)=\frac{P_{X, Y}(x, y)}{P_{Y}(y)}$ for all x

Random Variables

Given two RVs X and Y the conditional distribution is:

$$
p(X \mid Y)=\frac{p(X, Y)}{p(Y)}=\frac{p(X, Y)}{\sum_{x} p(X=x, Y)}
$$

Multiply both sides by $p(Y)$ to obtain the probability chain rule:

$$
p(X, Y)=p(Y) p(X \mid Y)
$$

For N RVs $X_{1}, X_{2}, \ldots, X_{N}$:

$$
p\left(X_{1}, X_{2}, \ldots, X_{N}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right) \ldots p\left(X_{N} \mid X_{N-1}, \ldots, X_{1}\right)
$$

$$
=p\left(X_{1}\right) \prod_{i=2}^{N} p\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

Fundamental Rules of Probability

Law of total probability

$$
p(Y)=\sum_{x} p(Y, X=x)
$$

Proof

$$
\begin{aligned}
\sum_{x} p(Y, X=x) & =\sum_{x} p(Y) p(X=x \mid Y) & & \text { (chain rule) } \\
& =p(Y) \sum_{x} p(X=x \mid Y) & & \text { (distributive property) } \\
& =p(Y) & & \text { (axiom of probability) }
\end{aligned}
$$

Generalization for conditionals:

$$
p(Y \mid Z)=\sum_{x} p(Y, X=x \mid Z)
$$

Independence of RVs

Question: Roll two dice and let their outcomes be $X_{1}, X_{2} \in\{1, \ldots, 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$
p\left(X_{1} \mid X_{2}\right)=\frac{p\left(X_{1}, X_{2}\right)}{p\left(X_{2}\right)}
$$

Which of the following are true?
a) $p\left(X_{1}=1 \mid X_{2}=1\right)>p\left(X_{1}=1\right)$
b) $p\left(X_{1}=1 \mid X_{2}=1\right)=p\left(X_{1}=1\right) \quad$ Outcome of die 2 doesn't affect die 1
c) $p\left(X_{1}=1 \mid X_{2}=1\right)<p\left(X_{1}=1\right)$

Independence of RVs

Question: Let $X_{1} \in\{1, \ldots, 6\}$ be outcome of die 1, as before. Now let $X_{3} \in\{2,3, \ldots, 12\}$ be the sum of both dice. Which of the following are true?

$$
\text { a) } p\left(X_{1}=1 \mid X_{3}=3\right)>p\left(X_{1}=1\right)
$$

$$
\text { b) } p\left(X_{1}=1 \mid X_{3}=3\right)=p\left(X_{1}=1\right)
$$

$$
\text { c) } p\left(X_{1}=1 \mid X_{3}=3\right)<p\left(X_{1}=1\right)
$$

Only 2 ways to get $X_{3}=3$, each with equal probability:

$$
\left(X_{1}=1, X_{2}=2\right) \quad \text { or } \quad\left(X_{1}=2, X_{2}=1\right)
$$

so

$$
p\left(X_{1}=1 \mid X_{3}=3\right)=\frac{1}{2}>\frac{1}{6}=p\left(X_{1}=1\right)
$$

Independence of RVs

Definition Two random variables X and Y are independent if and only if,

$$
p(X=x, Y=y)=p(X=x) p(Y=y)
$$

for all values x and y, and we say $X \perp Y$.

Definition RVs $X_{1}, X_{2}, \ldots, X_{N}$ are mutually independent if and only if,

$$
p\left(X_{1}=x_{1}, \ldots, X_{N}=x_{N}\right)=\prod_{i=1}^{N} p\left(X_{i}=x_{i}\right)
$$

$>$ Independence is symmetric: $X \perp Y \Leftrightarrow Y \perp X$
$>$ Equivalent definition of independence: $p(X \mid Y)=p(X)$

Independence of RVs

- N RVs are pairwisely independent if and only if:
- $P\left(X_{i}, X_{j}\right)=P\left(X_{i}\right) P\left(X_{j}\right)$ for every pair i, j.
- Pairwise independence \rightarrow Mutual Independence
- $X=1$ if coin 1 is heads, 0 otherwise
- $Y=1$ if coin 2 is heads, 0 otherwise
- $Z=X(X O R) Y$

Independence of RVs

Definition Two random variables X and Y are conditionally independent given Z if and only if,

$$
p(X=x, Y=y \mid Z=z)=p(X=x \mid Z=z) p(Y=y \mid Z=z)
$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.
$>N$ RVs conditionally independent, given Z, if and only if:

$$
p\left(X_{1}, \ldots, X_{N} \mid Z\right)=\prod_{i=1}^{N} p\left(X_{i} \mid Z\right)
$$

$>$ Equivalent def'n of conditional independence: $p(X \mid Y, Z)=p(X \mid Z)$
$>$ Symmetric: $X \perp Y|Z \Leftrightarrow Y \perp X| Z$

Conditional Independence

Let's say you know that the kid has visited the museum more than once.

Are X and Y independent in this new universe?

X :Grade

Y :Number of times in NHMI

Functions of RVs

Functions of RVs are also RVs

Let's say X has the following distribution:

$$
P_{X}(x)=\frac{x^{2}}{a}, x \in\{-3,-2,-1,1,2,3\}
$$

1. Find the pmf of X
2. Find the pmf of $Z=X^{2}$

Practice

- A fair coin is tossed 3 times
- X : The number of heads on the first toss
- Y: Total number of heads
- Find
- The joint distribution of X, Y
- The marginal distributions of X, Y
- The conditional distributions for $Y|X=1, X| Y=3$
- Are they independent?

Expected value of a discrete random variable

In a game of cards you win $\$ 1$ if you draw a heart, $\$ 5$ if you draw an ace (including the ace of hearts), $\$ 10$ if you draw the king of spades and nothing for any other card you draw.

Write the probability model for your winnings, and calculate your expected winning.

Event	X	$P(X)$
Heart (not ace)	1	$\frac{12}{52}$
Ace	5	$\frac{4}{52}$
King of spades	10	$\frac{1}{52}$
All else	0	$\frac{35}{52}$
Total		

Expected value of a discrete random variable (cont.)

Below is a visual representation of the probability distribution of winnings from this game:

Expected value of a discrete random variable

In a game of cards you win $\$ 1$ if you draw a heart, $\$ 5$ if you draw an ace (including the ace of hearts), $\$ 10$ if you draw the king of spades and nothing for any other card you draw.

Write the probability model for your winnings, and calculate your expected winning.

Event	X	$P(X)$	$X P(X)$
Heart (not ace)	1	$\frac{12}{52}$	$\frac{12}{52}$
Ace	5	$\frac{4}{52}$	$\frac{20}{52}$
King of spades	10	$\frac{1}{52}$	$\frac{10}{52}$
All else	0	$\frac{35}{52}$	0
Total			$E(X)=\frac{42}{52} \approx 0.81$

Expectation

Definition The expectation of a discrete $R V_{X}$, denoted by $\mathbf{E}[X]$, is:

$$
\mathbf{E}[X]=\sum_{x} x p(X=x)
$$

Theorem (Linearity of Expectations) For any finite collection of discrete RVs X_{1}, \ldots, X_{n} with finite expectations,

$$
\mathbf{E}\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} \mathbf{E}\left[X_{i}\right]
$$

Corollary For any constant c $\quad \mathbf{E}[c X]=c \mathbf{E}[X]$

Theorem: If $X \perp Y$ then $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$.

Conditional Expectation

Definition The conditional expectation of a discrete $R V X$, given Y is:

$$
\mathbf{E}[X \mid Y=y]=\sum_{x} x p(X=x \mid Y=y)
$$

Example Roll two standard six-sided dice and let X be the result of the first die and let Y be the sum of both dice, then:

$$
\begin{aligned}
\mathbf{E}\left[X_{1} \mid Y=5\right] & =\sum_{x=1}^{4} x p\left(X_{1}=x \mid Y=5\right) \\
& =\sum_{x=1}^{4} x \frac{E[X \mid Y=y] \text { is a number }}{p(Y=5) \text { is a function }} \sum_{x=1}^{w} 4 / 36
\end{aligned}=\frac{5}{2}
$$

Conditional expectation follows properties of expectation (linearity, etc.)

Law of Total Expectation

Law of Total Expectation Let X and Y be discrete RVs with finite expectations, then:

	$\mathbf{E}[X]=\mathbf{E}_{Y}\left[\mathbf{E}_{X}[X \mid Y]\right]$		
Proof $\quad \mathbf{E}_{Y}\left[\mathbf{E}_{X}[X \mid Y]\right]$	$=\mathbf{E}_{Y}\left[\sum_{x} x \cdot p(x \mid Y)\right]$		
$=$	$\sum_{y}\left[\sum_{x} x \cdot p(x \mid y)\right] \cdot p(y)$		(Definition of expectation)
	$=\sum_{y} \sum_{x} x \cdot p(x, y)$		(Probability chain rule)
	$=\sum_{x} x \sum_{y} \cdot p(x, y)$		(Linearity of expectations)
$=$	$\sum_{x} x \cdot p(x)=\mathbf{E}[X]$		(Law of total probability)

Law of the Unconscious Statistician

- If $Y=g(X)$,
- $E[Y]=\sum_{x} g(x) P_{X}(x)$

Proof:

$$
\begin{aligned}
E[Y]= & \sum_{y} y P_{Y}(y)= \\
& \sum_{y} y P\left(x=g^{-1}(y)\right)= \\
& \sum_{y} y \sum_{x=g^{-1}(y)} P_{X}(x)= \\
& \sum_{y} \sum_{x=g^{-1}(y)} g(x) P_{X}(x)= \\
& \sum_{x} g(x) P_{X}(x)
\end{aligned}
$$

Variance

We are also often interested in the variability in the values of a random variable.

Definition The variance of a $R V$ is defined as,

$$
\begin{gathered}
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
\sigma[X]=\sqrt{\operatorname{Var}[X]}
\end{gathered}
$$

Lemma An equivalent form of variance is:

$$
\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
$$

Variance of a discrete random variable

For the previous card game example, how much would you expect the winnings to vary from game to game?

Variance of a discrete random variable

For the previous card game example, how much would you expect the winnings to vary from game to game?

X	$P(X)$	$X P(X)$	$(X-E(X))^{2}$	$P(X)(X-E(X))^{2}$
1	$\frac{12}{52}$	$1 \times \frac{12}{52}=\frac{12}{52}$	$(1-0.81)^{2}=0.0361$	$\frac{12}{52} \times 0.0361=0.0083$
5	$\frac{4}{52}$	$5 \times \frac{4}{52}=\frac{20}{52}$	$(5-0.81)^{2}=17.5561$	$\frac{4}{52} \times 17.5561=1.3505$
10	$\frac{1}{52}$	$10 \times \frac{1}{52}=\frac{10}{52}$	$(10-0.81)^{2}=84.4561$	$\frac{1}{52} \times 84.0889=1.6242$
0	$\frac{35}{52}$	$0 \times \frac{35}{52}=0$	$(0-0.81)^{2}=0.6561$	$\frac{35}{52} \times 0.6561=0.4416$
		$E(X)=0.81$		

Variance of a discrete random variable

For the previous card game example, how much would you expect the winnings to vary from game to game?

X	$P(X)$	$X P(X)$	$(X-E(X))^{2}$	$P(X)(X-E(X))^{2}$
1	$\frac{12}{52}$	$1 \times \frac{12}{52}=\frac{12}{52}$	$(1-0.81)^{2}=0.0361$	$\frac{12}{52} \times 0.0361=0.0083$
5	$\frac{4}{52}$	$5 \times \frac{4}{52}=\frac{20}{52}$	$(5-0.81)^{2}=17.5561$	$\frac{4}{52} \times 17.5561=1.3505$
10	$\frac{1}{52}$	$10 \times \frac{1}{52}=\frac{10}{52}$	$(10-0.81)^{2}=84.4561$	$\frac{1}{52} \times 84.0889=1.6242$
0	$\frac{35}{52}$	$0 \times \frac{35}{52}=0$	$(0-0.81)^{2}=0.6561$	$\frac{35}{52} \times 0.6561=0.4416$
		$E(X)=0.81$		$V(X)=3.4246$
			$S D(X)=\sqrt{3.4246}=1.85$	

Variance of Sums of Distributions

Question: What is the variance of their sum?

$$
\begin{aligned}
\operatorname{Var}\left[X_{1}+X_{2}\right] & =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+2 \mathbf{C o v}\left(X_{1}, X_{2}\right) \\
& =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+2 \mathbf{E}\left[\left(X_{1}-\mathbf{E}\left[X_{1}\right]\right)\left(X_{2}-\mathbf{E}\left[X_{2}\right]\right)\right] \\
& =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+2 \mathbf{E}\left[\left(X_{1}-\mathbf{E}\left[X_{1}\right]\right)\right] \mathbf{E}\left[\left(X_{2}-\mathbf{E}\left[X_{2}\right]\right)\right] \\
& =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+2\left(\mathbf{E}\left[X_{1}\right]-\mathbf{E}\left[X_{1}\right]\right)\left(\mathbf{E}\left[X_{2}\right]-\mathbf{E}\left[X_{2}\right]\right) \\
& =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]
\end{aligned}
$$

Theorem: If $X \perp Y$ then $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$
Corollary: If $X \perp Y$ then $\operatorname{Cov}(X, Y)=0$
Corollary: For collection of $R V s X_{1}, X_{2}, \ldots, X_{N}: \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$

Covariance

Definition The covariance of two $R V s X$ and Y is defined as,

$$
\operatorname{Cov}(X, Y)=\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]
$$

Lemma For any two RVs X and Y,

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)
$$

e.g. variance is not a linear operator.

Proof $\quad \operatorname{Var}[X+Y]=\mathbf{E}\left[(X+Y-\mathbf{E}[X+Y])^{2}\right]$
(Linearity of expectation) $\quad=\mathbf{E}\left[(X+Y-\mathbf{E}[X]-\mathbf{E}[Y])^{2}\right]$
(Distributive property) $\quad=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}+(Y-\mathbf{E}[Y])^{2}+2(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])\right]$
(Linearity of expectation) $=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]+\mathbf{E}\left[(Y-\mathbf{E}[Y])^{2}\right]+2 \mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]$
(Definition of Var $/ \operatorname{Cov}$) $=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}(X, Y)$

Covariance

Assume zero means
If $X Y>0 \Rightarrow E(X Y)>0$
If $X Y<0 \Rightarrow E(X Y)<0$
If you have equal number of points in all quarters?
If X, Y are independent:
$E[(X-E[X])(Y-E[Y])]=E[X-E[X]] E[Y-E[Y]]$
$=0$
The opposite is not necessarily true

Example:
$X \in\{-1,0,1\}, P(X=x)=\frac{1}{3}$ for all x
Find the covariance of X, X^{2}
Are X, X^{2} dependent?

Correlation

- X: Distribution of heights of kids in Greece measured in centimeters.
- Y: Distribution of heights of kids in Greece measured in meters.
- Z: Distribution of head circumference in Greece measured in centimeters
- Which pair has larger covariance: X, Z or Y, Z ?
- $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$

