Probabilistic Graphical Models

Introduction

Logistics

- Textbooks:
- Christopher Bishop, Pattern Recognition and Machine Learning
- Kevin Murphy, Machine Learning: A probabilistic Perspective
- Daphne Koller and Nir Friedman, Probabilistic Graphical Models
- Class website: https://polyhedron.math.uoc.gr/2223/moodle/course/view.php?id=18
- Grading:
- 2 homework assignments: 20\% of grade
- Theory exercises, Implementation exercises
- Project: 40% of grade
- Pick a paper (not introductory) from M.I. Jordan (editor), Learning in Graphical Models
- Present it in class.
- Implement the method
- Apply it on a real or simulated data set.
- March $6^{\text {th }}$:Deadline for project proposal

What Are Graphical Models?

Model
M_{G}

Data

$$
\left\{x_{1}^{(i)}, \ldots, x_{n}^{i}\right\}_{i=1}^{N}
$$

Reasoning under uncertainty!

The Fundamental Questions

- Representation
- How to capture/model uncertainties in possible worlds?
- How to encode our domain knowledge/assumptions/constraints?
- Inference
- How do I answer questions/queries according to my model and/or based given data?

$$
\text { e.g.: } P\left(X_{i} \mid \boldsymbol{D}\right)
$$

- Learning
- What model is "right"
for my data?

$$
\text { e.g.: } M=\underset{M \in M}{\arg \max } F(D ; M)
$$

Representing multivariate distributions

- Representation: what is the joint probability dist. on multiple variables?

$$
P(A, B, C, D, E, F, G, H)
$$

- How many state configurations in total ? --- 2^{8}
- Are they all needed to be represented?
- Do we get any scientific/medical insight?
- Learning: where do we get all this probabilities?

- Maximal-likelihood estimation? but how many data do we need?
- Are there other est. principles?
- Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- Inference: If not all variables are observable/observed, how to compute the conditional distribution of latent variables given evidence?
- Computing $P(H \mid A)$ would require summing over all 2^{6} configurations of the unobserved variables

What is a Graphical Model?

--- Multivariate Distribution in High-D Space

- A possible world for cellular signal transduction:

```
ReceptorA
```

Receptor B

Kinase C
Kinase D
Kinase E

TF F

Gene G
Gene H

GM: Structure Simplifies Representation

- Dependencies among variables

Probabilistic Graphical Models

- If X_{i} 's are conditionally independent (as described by a PGM), the joint can be factored to a product of simpler terms, e.g.,

$$
\begin{aligned}
& P(A, B, C, D, E, F, G, H) \\
= & P(A) P(B) P(C \mid A) P(D \mid B) P(E \mid B) \\
& P(F \mid C, D) P(G \mid F) P(H \mid E, F)
\end{aligned}
$$

- Why we may favor a PGM?
- Incorporation of domain knowledge and causal (logical) structures
$1+1+2+2+2+4+2+4=18$, a 16 -fold reduction from 2^{8} in representation cost !

GMs are your old friends

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach Clustering

Probabilistic Graphical Models

Probability recap

> Reading: Murphy, Secs. 2.1 and 2.2.
> Lots of slides from: Eli Upfal, Jason Panjeho.

Random Events and Probability

Suppose we roll two fair dice...

$>$ What are the possible outcomes?
$>$ What is the probability of rolling even numbers?
$>$ What is the probability of rolling odd numbers?
$>$ If one die rolls 1 , then what is the probability of the second die also rolling 1 ?
$>$ How to mathematically formulate outcomes and their probabilities?
...this is an experiment or random process.
Formulate as probability space having 3 components

Random Events and Probability

A sample space Ω : set of all possible outcomes of the experiment.

Dice Example: All combinations of dice rolls,

$$
\Omega=\{(1,1),(1,2), \ldots,(6,5),(6,6)\}
$$

2
An event space \mathcal{F} : Family of sets representing allowable events, where each set in \mathcal{F} is a subset of the sample space Ω.

Dice Example: Event that we roll even numbers,

$$
E=\{(2,2),(2,4), \ldots,(6,4),(6,6)\} \in \mathcal{F}
$$

Random Events and Probability

(3) A probability function $P: \mathcal{F} \rightarrow \mathbf{R}$ satisfying:

1. For any event $E, 0 \leq P(E) \leq 1$
2. $P(\Omega)=1$ and $P(\emptyset)=0$
3. For any finite or countably infinite sequence of pairwise mutually disjoint events $E_{1}, E_{2}, E_{3}, \ldots$

$$
P\left(\bigcup_{i \geq 1} E_{i}\right)=\sum_{i \geq 1} P\left(E_{i}\right)
$$

```
Axioms of Probability
```


(Fair) Dice Example: Probability that we roll even numbers,

$$
P((2,2) \cup(2,4) \cup \ldots \cup(6,6))=P((2,2))+P((2,4))+\ldots+P((6,6))
$$

$$
=\frac{1}{36}+\frac{1}{36}+\ldots+\frac{1}{36}=\frac{9}{36}
$$

Random Events and Probability

Some rules regarding set of event space \mathcal{F}...
$>\mathcal{F}$ must include \emptyset and Ω
$>\mathcal{F}$ is closed under countable unions, countable intersections and complement: if $E_{1}, E_{2} \in \mathcal{F}$ then:

- $E_{1} \cup E_{2} \in \mathcal{F}$
- $E_{1} \cap E_{2} \in \mathcal{F}$
- $\overline{E_{1}}=\Omega-E_{1} \in \mathcal{F}$

Random Events and Probability

Two dice example: If $E_{1}, E_{2} \in \mathcal{F}$ where,

$$
\begin{array}{cc}
E_{1}: \text { First die equals } 1 & E_{2}: \text { Second die equals } 1 \\
E_{1}=\{(1,1),(1,2), \ldots,(1,6)\} & E_{2}=\{(1,1),(2,1), \ldots,(6,1)\}
\end{array}
$$

Then we must include the following events...

Operation	Value	Interpretation
$E_{1} \cup E_{2}$	$\{(1,1),(1,2), \ldots,(1,6),(2,1), \ldots,(6,1)\}$	Any die rolls 1
$E_{1} \cap E_{2}$	$\{(1,1)\}$	Both dice roll 1
$E_{1}-E_{2}$	$\{(1,2),(1,3),(1,4),(1,5),(1,6)\}$	First die rolls 1 only
$\overline{E_{1} \cup E_{2}}$	$\{(2,2),(2,3), \ldots,(2,6),(3,2), \ldots,(6,6)\}$	No die rolls 1

Random Events and Probability
Can interpret these operations as a Venn diagram...

Random Events and Probability

Lemma: For any two events E_{1} and E_{2},

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Graphical Proof:

Subtract from both sides

Random Events and Probability

Lemma: For any two events E_{1} and E_{2},

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Proof:

$$
\begin{gathered}
P\left(E_{1}\right)=P\left(E_{1} \backslash\left(E_{1} \cap E_{2}\right)\right)+P\left(E_{1} \cap E_{2}\right) \\
P\left(E_{2}\right)=P\left(E_{2} \backslash\left(E_{1} \cap E_{2}\right)\right)+P\left(E_{1} \cap E_{2}\right) \\
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1} \backslash\left(E_{1} \cap E_{2}\right)\right)+P\left(E_{2} \backslash\left(E_{1} \cap E_{2}\right)\right)+P\left(E_{1} \cap E_{2}\right)
\end{gathered}
$$

Law of Total Probability

$$
P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
$$

Independence

Definition

Two events A and B are independent if

$$
P(A \cap B)=P(A) P(B) .
$$

We denote this as
$A \perp B$

You roll a die. Consider the following two events

- A : "The outcome is an even number"
- B : "The outcome is one of the numbers $\{1,2,3,4\}$ "
- C : "The outcome is one of the numbers $\{1,2,3\}$ "

Find $P(A), P(B)$, and $P(A \cap B)$
Are A and B independent?
Find $P(A), P(C)$, and $P(A \cap C)$
Are A and C independent?

Conditional Probability

One way to interpret the independence of events is as follows:

- Consider again the following two events:
- A : "The outcome is an even number"
- B : "The outcome is one of the numbers $\{1,2,3,4\}$ "
- You want to bet on event A. How much are you willing to bet?
- I roll the die and tell you that event B has happened (hence, the outcome is one of $\{1,2,3,4\}$.
- How much are you willing to bet now?
- We just described the conditional probability

$$
P(A=\text { True } \mid B=\text { true })
$$

Conditional Probability

Conditional Probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Law of Total Probability

$$
\begin{aligned}
& P(A)=P(A \cap B)+P\left(A \cap B^{c}\right) \\
& P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
\end{aligned}
$$

Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Very often, people confuse $P(A \mid B)$ and $P(B \mid A)$. These can be VERY different.
Think about it:
You read in the paper: "Half of the people hospitalized with covid-19 are fully vaccinated". Do you think that getting the vaccine lowers your chances of getting hospitalized?

Example

A box contains two coins: a regular coin and one fake two-headed coin $(P(H)=1)$. I choose a coin at random and toss it twice. Define the following events.

- A = First coin toss results in an H.
$\cdot \mathrm{B}=$ Second coin toss results in an H.
- C= Coin 1 (regular) has been selected.

Find $P(A \mid C), P(B \mid C), P(A \cap B \mid C), P(A), P(B)$, and $P(A \cap B)$
Are A and B independent?
Are A and B independent given C ?

Bayes Rule

- Vacc: True if vaccinated, false otherwise
- Hosp: True if hospitalized, false otherwise.
- $P($ Hosp \mid Vacc $)=0.01$
- $P\left(\right.$ Hosp \mid Vacc $\left.{ }^{c}\right)=0.2$
- Consider these different possibilities: $P($ Vacc $)=$ $0.5,0.99$

Let's use Bayes rule to compute P(Vacc|Hosp) for both cases.

Conditional Independence

Definition

Two events A and B are independent given an event C if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C) .
$$

We denote this as

$$
A \perp B \mid C
$$

Random Variables

Suppose we are interested in a distribution over the sum of dice...

Option-1 Let E_{i} be event that the sum equals i
Two dice example:

$$
\begin{aligned}
& E_{2}=\{(1,1)\} \quad E_{3}=\{(1,2),(2,1)\} \quad E_{4}=\{(1,3),(2,2),(3,1)\} \\
& E_{5}=\{(1,4),(2,3),(3,2),(4,1)\} \quad E_{6}=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}
\end{aligned}
$$

Enumerate all possible means of obtaining desired sum. Gets cumbersome for $\mathrm{N}>2$ dice...

Random Variables

Suppose we are interested in a distribution over the sum of dice...

Option 2 Use a function of sample space...
Definition A random variable $X(\omega)$ for $\omega \in \Omega$ is a real-valued function $X: \Omega \rightarrow \mathbb{R}$. A discrete random variable takes on only a finite or countably infinite number of values.

For discrete RVs $X=x$ is an event with probability mass function:

$$
p(X=x)=\sum_{\omega \in \Omega: X(\omega)=x} P(\omega)
$$

Random Variables

Some notes on random variables (RVs)...

$>$ We denote the RV by capital X and its realization by lowercase x
$>$ Generally use shorthand X instead of $X(\omega)$
$>$ Other common shorthand: $p(x)=p(X=x)$
$>$ Any function $f(X)$ of an RV is also an RV, e.g. $Y(\omega)=f(X(\omega))$
$>$ More shorthand: the joint distribution of RVs $p(X, Y)=p(X \cap Y)$
$>$ We will use "distribution" loosely to refer to distributions, PMFs, probability density and cumulative distribution functions (defined later)

