Probabilistic Graphical Models

Introduction
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Logistics

Textbooks:
o Christopher Bishop, Pattern Recognition and Machine Learning
o Kevin Murphy, Machine Learning: A probabilistic Perspective
o Daphne Koller and Nir Friedman, Probabilistic Graphical Models

Cl

ass website: https://polyhedron.math.uoc.qgr/2223/moodle/course/view.php?id=18

o Grading:

Q

Q

a

2 homework assignments: 20% of grade

Theory exercises, Implementation exercises

Project: 40% of grade

Q

Q

Q

Pick a paper (not introductory) from M.I. Jordan (editor), Learning in Graphical Models
Present it in class.

Implement the method

Apply it on a real or simulated data set.

March 6t :Deadline for project proposal


https://polyhedron.math.uoc.gr/2223/moodle/course/view.php?id=18

What Are Graphical Models?
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Reasoning under uncertainty!
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The Fundamental Questions

o Representation
o How to capture/model uncertainties in possible worlds?
o How to encode our domain knowledge/assumptions/constraints?

o Inference

o How do | answer questions/queries
according to my model and/or based

given data?
e.g.. P(X;|D)

o Learning

o What model is "right”
for my data?

e.g.: M =argmax F (D;M)

MeM



Representing multivariate distributions

Representation: what is the joint probability dist. on multiple variables?
P(A, B, C, D, E ,F, G, H)

e How many state configurations in total ? --- 28 A7) B8]
e Are they all needed to be represented? ] D [ E]
e Do we get any scientific/medical insight?

Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?
e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and plausible
values of the probabilities?

Inference: If not all variables are observable/observed, how to compute the
conditional distribution of latent variables given evidence?

e Computing P(H|A) would require summing over all 26 configurations of the unobserved variables



What is a Graphical Model?

--- Multivariate Distribution in High-D Space

o A possible world for cellular signal transduction:

[ Receptor A ] [ Receptor B ]

[ Kinase C ] [ Kinase D ] [ Kinase E ]
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GM: Structure Simplifies Representation

o Dependencies among variables

[ Receptor A ]

[ Receptor B ]
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Probabilistic Graphical Models

o If Xi's are conditionally independent (as described by a PGM), the joint can be factored
to a product of simpler terms, e.g.,

P(A’B) C’D’E)EG’H)

= P(4) P(B) P(C| A) P(D| B) P(E| B)
P(FIC, D) P(GIF) P(H| E, F)

a Why we may favor a PGM?

Q Incorporation of domain knowledge and causal (logical) structures
1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !



GMs are your old friends

Parametric and nonparametric methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach
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Probabilistic Graphical Models

Probability recap



» Reading: Murphy, Secs. 2.1 and 2.2.
» Lots of slides from: Eli Upfal, Jason Panjeho.



Random Events and Probability
Suppose we roll two fair dice... ‘

» What are the possible outcomes?
» What is the probability of rolling even numbers?
» What is the probability of rolling odd numbers?

» If one die rolls 1, then what is the
probability of the second die also rolling 1?

» How to mathematically formulate
outcomes and their probabilities?

...this is an experiment or random process.

Formulate as probabilify space having 3 components



Random Events and Probability

A sample space (): set of all possible outcomes ‘
of the experiment.
Dice Example: All combinations of dice rolls, 0@
QO ={(1,1),(1,2),...,(6,5),(6,6)} .’
An event space r: Family of sets
representing allowable events, where each set
In_Fis a subset of the sample space ().

Dice Example: Event that we roll even numbers,
E=1{(2,2),(2,4),...,(6,4),(6,6)} € F




Random Events and Probability
A probability function P : F — R satisfying: ‘

1. Foranyevent g 0 < P(F) <1
— — Axioms of Probability

2. P(Q)=1and P(®) =0 0@

3. For any finite or countably infinite sequence of
pairwise mutually disjoint events F, FE5, Fs, ...

P(U E) -3 P

i>1 i>1
(Fair) Dice Example: Probability that we roll even numbers,

P((2,2)U(2,4)U...U(6,6)) = P((2,2)) + P((2,4)) + ...+ P((6,6))
1 1 1 9

9 Possible outcomes, each with _ . | = —

equal probability of occurring 36 36 36 30




Random Events and Probability

Some rules regarding set of event space F...

> F must include @ and Q

» JF Is closed under countable unions, countable intersections
and complement: if E1, B> € F then:

e F{UEs € F
e 1 NEy e F

'E_1:Q—E1€F



Random Events and Probability

Two dice example: If £, E5 ¢ F where,
E: First die equals 1 E5 : Second die equals 1
FE1={(1,1),(1,2),...,(1,6)} FEy={(1,1),(2,1),...,(6,1)}
Then we must include the following events...

E1 U Es {(1,1),(1,2),...,(1,6),(2,1),...,(6,1)} Any die rolls 1
E1 N E5 {(1,1)} Both dice roll 1
El o E2 {(172)7 (173>7 (174)7 (175)7 (136)} First die rolls 1 Only

El U E2 {(272)7(273)7'"7(276>7(372>7°" ) (676)} NO die rO”S 1




Random Events and Probability

Can interpret these operations as a Venn diagram...




Random Events and Probability

Lemma: For any two events F,and E-,

P(E; UE;) = P(Ey) + P(E;) — P(E; N Ey)

Graphical Proof:

ElnE—Z.
+ = +

Subtract from both sides




Random Events and Probability

Lemma: For any two events F,and E-,
P(E; UE;) = P(E;) + P(E;) — P(E; N Ey)

Proof:

P(E;) = P(E1 \ (E1N E)) + P(E; N Ey)
P(E;) = P(E; \ (E1N E3)) + P(E; NEy)

P(E; U E;) = P(E; \ (E1N Ey)) + P(E2 \ (E1N Ey)) + P(E; N Ey)



Law of Total Probability

P(A) =P(ANnB)+ P(ANB°




Independence

Definition
Two events A and B are independent if

P(A N B) = P(A)P(B).

We denote this as
AlB



Example

You roll a die. Consider the following two events

AT
B:"T
C:"T

ne outcome is an even number”
ne outcome is one of the numbers {1, 2, 3, 4}

ne outcome is one of the numbers {1, 2, 3}’

Find P(A), P(B),and P(A N B)

Are A and B independent?

Find P(A),P(C),and P(ANC)

Are A and C independent?



Conditional Probability

One way to interpret the independence of events is as follows:
« Consider again the following two events:

 A:"The outcome is an even number”

B :"The outcome is one of the numbers {1, 2, 3, 4}"

* You want to bet on event A. How much are you willing to bet?
« | roll the die and tell you that event B has happened (hence,
the outcome is one of {1, 2, 3, 4}.
 How much are you willing to bet now?
* We just described the conditional probability

P(A = True|B = true)



Conditional Probability

Conditional Probability:

P(AN B)
P(B)

P(A|B) =



Law of Total Probability

P(A) =P(ANnB)+ P(ANB°

P(A) = P(A|B)P(B) + P(A|B°)P(B°)




Bayes Rule

P(B|A) P(A)
P(B)

P(A|B) =

Very often, people confuse P(A|B) and P(B|A). These can be

VERY different.

Think about it:

You read in the paper: "Half of the people hospitalized with covid-19
are fully vaccinated". Do you think that getting the vaccine lowers
your chances of getting hospitalized?



Example

A box contains two coins: a regular coin and one fake two-headed

coin (P(H) = 1). | choose a coin at random and toss it twice. Define
the following events.

*A = First coin toss results in an H.

B = Second coin toss results in an H.

*C= Coin 1 (regular) has been selected.

Find P(A|C),P(B|C),P(ANnB|C),P(A),P(B),and P(ANB)

Are A and B independent?
Are A and B independent given C?



Bayes Rule

» Vacc: True if vaccinated, false otherwise

* Hosp: True if hospitalized, false otherwise.

* P(Hosp|Vacc) = 0.01

 P(Hosp|Vacc®) = 0.2

» (Consider these different possibilities: P(Vacc) =
0.5, 0.99

Let’s use Bayes rule to compute P(Vacc|Hosp) for
both cases.



Conditional Independence

Definition
Two events A and B are independent given an event C if

P(A n B|C) = P(A|C)P(B|C).

We denote this as
A 1 B|C



Random Variables

Suppose we are interested in a distribution over 6‘

the sum of dice...

Qption 1 Let E; be event that the sum equals i iii

Two dice example:

Eo = {(17 1)} E3 = {(172)7 (27 1)} Ey = {(173)7 (272)7 (37 1)}
Es = {(174)7 (273)7 (372)7 (47 1)} Fg = {(175)7 (274)7 (373)7 (472)7 (57 1)}

Enumerate all possible means of obtaining desired sum. Gets
cumbersome for N>2 dice...



Random Variables

Suppose we are interested in a distribution over ‘
the sum of dice...

Option 2 Use a function of sample space... 0

Definition A random variable X (w)for w € Q is a
real-valued function X : {1 — R . A discrete random variable
takes on only a finite or countably infinite number of values.

For discrete RVs X = x is an event with probability mass function:

p(X=z)= )  P)

we: X(w)=x



Random Variables

Some notes on random variables (RVS)...

» We denote the RV by capital X and its realization by lowercase x
» Generally use shorthand X instead of X (w)

> Other common shorthand: p(z) = p(X = )

> Any function f(X)of an RVis also an RV, e.g. Y(w) = f(X(w))

> More shorthand: the joint distribution of RVs p(X,Y) =p(X NY)

»\We will use “distribution” loosely to refer to distributions, PMFs,
probability density and cumulative distribution functions (defined later)



