Parametric Statistics

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

Lecture Summary

- 9.5 The t-test
- 9.6 Comparing the means of two normal distributions
- 9.7 The F distributions

Uniformly Most Powerful Tests

 $H_0: \theta \in \Omega_0 \quad \mathsf{vS} \quad H_1: \theta \in \Omega_1$

A test δ* is a uniformly most powerful test at level α₀ if for any other level α₀ test δ

$$\pi(\theta \mid \delta) \le \pi \left(\theta \mid \delta^*\right) \quad \text{ for all } \theta \in \Omega_1$$

I.o.w: It has the lowest probability of type II error of any test, uniformly for all $\theta \in \Omega_1$.

- We control the probability of type I error by setting the level (size) of the test low. We then want to control the probability of type II error.
- ▶ If $\pi(\theta \mid \delta^*)$ is high for all $\theta \in \Omega_1$, the test is often called "powerful"
- In a large class of problems (the distribution has a "monotone likelihood ratio") we can find a uniformly most powerful test for one-sided hypotheses (Ch. 9.3).

The *t*-Test

- The t-Test is a test for hypotheses concerning the mean parameter in the normal distribution when the variance is also unknown.
- The test is based on the t distribution

The setup for the next few slides:

• Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ and consider the hypotheses

$$H_0: \mu \le \mu_0$$
 vs. $H_1: \mu > \mu_0$

The parameter space here is $-\infty < \mu < \infty$ and $\sigma^2 > 0$, i.e.

$$\Omega = (-\infty, \infty) \times (0, \infty)$$

And

$$\Omega_0 = (-\infty, \mu_0] \times (0, \infty) \text{ and } \Omega_1 = (\mu_0, \infty) \times (0, \infty)$$

The one-sided *t*-Test

Let

$$U = \frac{\sqrt{n} \left(\bar{X}_n - \mu_0 \right)}{\sigma'} \quad \text{where } \sigma' = \left(\frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2 \right)^{1/2}$$

• If
$$\mu = \mu_0$$
 then U has the t distribution

 \blacktriangleright Tests based on U are called t tests

The one-sided *t*-Test

• Let T_n^{-1} be the quantile function of the t_n distribution

Theorem (Theorem 9.5.1)

The test δ that rejects H_0 in (1) if $U \ge T_{n-1}^{-1}(1-\alpha_0)$ has size α_0 and a power function with the following properties (i) $\pi (\mu_0, \sigma^2 \mid \delta) = \alpha_0$ (ii) $\pi (\mu, \sigma^2 \mid \delta) < \alpha_0$ for $\mu < \mu_0$ (iii) $\pi (\mu, \sigma^2 \mid \delta) > \alpha_0$ for $\mu > \mu_0$ (iv) $\pi (\mu, \sigma^2 \mid \delta) \to 0$ as $\mu \to -\infty$ (v) $\pi (\mu, \sigma^2 \mid \delta) \to 1$ as $\mu \to \infty$

The complete power function

To calculate the power function $\pi(\mu, \sigma^2 \mid \delta)$ exactly we need the non-central t_m distributions:

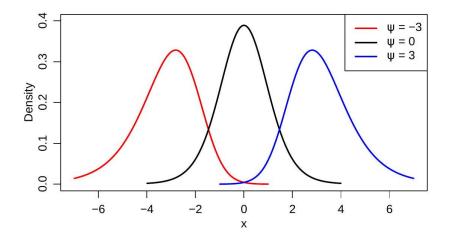
Definition

Let $W \sim N(\psi,1)$ and $Y \sim \chi^2_m$ be independent. The distribution of

$$X = \frac{W}{(Y/m)^{1/2}}$$

is called the non-central t distribution with m degrees of freedom and non-centrality parameter ψ

Non-central t_m distribution



The complete power function

Theorem (Theorem 9.5.3)

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi=\sqrt{n}\left(\mu-\mu_0\right)/\sigma$

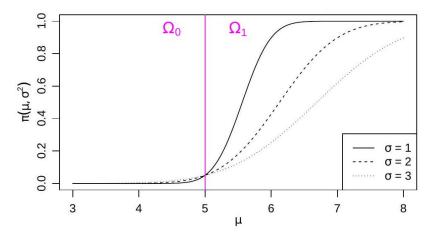
The power function of the t-test that rejects H_0 in (1) if $U\geq T_{n-1}^{-1}\,(1-\alpha_0)=c_1$ is

$$\pi\left(\mu,\sigma^{2}\mid\delta\right)=1-T_{n-1}\left(c_{1}\mid\psi\right)$$

► Can use the R function 1 - pt(q = c1, df = n - 1, ncp = psi)

Power function for the one-sided t-test

Example: $n = 10, \mu_0 = 5, \alpha_0 = 0.05$ Power function for the size 0.05t - test, with n = 10



Note that the power function is a function of both σ^2 and μ

p-value for the one-sided t-Test

Theorem (9.5.2:p-values for t tests) Let $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$. Let δ be the one sided t-test for H_0, H_1 . Let u be the observed value of U. The p-value is $1 - T_{n-1}(u)$.

Example: Acid Concentration in Cheese (Example 8.5.4)

- Have a random sample of n = 10 lactic acid measurements from cheese, assumed to be from a normal distribution with unknown mean and variance.
- Observed: $\bar{x}_n = 1.379$ and $\sigma' = 0.3277$
- \blacktriangleright Perform the level $\alpha_0=0.05~t\text{-test}$ of the hypotheses

 $H_0: \mu \le 1.2$ vs $H_1: \mu > 1.2$

Compute the p-value

The other one-sided t-Test

Now consider the hypotheses

$$H_0: \mu \ge \mu_0 \quad \text{vS.} \quad H_1: \mu < \mu_0$$

Corollary (9.5.1)

The test δ that rejects H_0 if $U \leq T_{n-1}^{-1}(\alpha_0)$ has size α_0 and a power function with the following properties (i) $\pi(\mu_0, \sigma^2 | \delta) = \alpha_0$ (ii) $\pi(\mu, \sigma^2 | \delta) > \alpha_0$ for $\mu < \mu_0$ (iii) $\pi(\mu, \sigma^2 | \delta) < \alpha_0$ for $\mu > \mu_0$ (iv) $\pi(\mu, \sigma^2 | \delta) \rightarrow 1$ as $\mu \rightarrow -\infty$ (v) $\pi(\mu, \sigma^2 | \delta) \rightarrow 0$ as $\mu \rightarrow \infty$ Power function and p-value for the other one-sided t-Test

Theorem (9.5.2: p-values for t Tests)

Let u be the observed value of U. The p-value is $T_{n-1}(u)$.

Theorem (Theorem 9.5.3)

U has the non-central t_{n-1} distribution with non-centrality parameter $\psi = \sqrt{n} (\mu - \mu_0) / \sigma$.

The power function of the t-test that rejects H_0 in (2) if $U \leq T_{n-1}^{-1}(\alpha_0) = c_2$ is

$$\pi\left(\mu,\sigma^{2}\mid\delta\right)=T_{n-1}\left(c_{2}\mid\psi\right)$$

Two-sided *t*-test

Consider now the test with a two-sided alternative hypothesis:

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$

Let δ be the test that rejects H₀ iff |U| ≥ T⁻¹_{n-1} (1 − α₀/2) = c
 Then δ is a size α₀ test

The power function is

$$\pi(\mu, \sigma^2 \mid \delta) = T_{n-1}(-c \mid \psi) + 1 - T_{n-1}(c \mid \psi)$$

▶ If u is the observed value of U then the p-value is $2(1 - T_{n-1}(|u|))$

The t test is a likelihood ratio test (see p. 583 - 585 in the book)

The paired *t*-test

Sometimes we are measuring the same variable under two different conditions

- National Transportation Safety Board crash test dummy experiment:
- For each car, place
 - One dummy in the driver's seat.
 - One dummy in the passenger's seat.
 - Measure the head injuries for each dummy
- You want to compare: On average, which seat suffers the most injuries.
- ► Take X₁,..., X_n to be the difference for each car: Head injury in the driver's side head injury in the passenger's side.
- Test $H_0: \mu \ge 0$ vs $H_1: \mu < 0$.

The two-sample *t*-test

Comparing the means of two populations

•
$$X_1, \ldots, X_m$$
 i.i.d. $N(\mu_1, \sigma^2)$ and

•
$$Y_1, ..., Y_n$$
 i.i.d. $N(\mu_2, \sigma^2)$

The variance is the same for both samples, but unknown
We are interested in testing one of these hypotheses:
a) H₀: µ₁ ≤ µ₂ vs. H₁: µ₁ > µ₂
b) H₀: µ₁ ≥ µ₂ vS. H₁: µ₁ < µ₂
c) H₀: µ₁ = µ₂ vS. H₁: µ₁ ≠ µ₂

Power function is now a function of 3 parameters: $\pi(\mu_1, \mu_2, \sigma^2 \mid \delta)$

Two-sample t statistic

et
$$\bar{X}_m = \frac{1}{m} \sum_{i=1}^m x_i$$
 and $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$
 $S_X^2 = \sum_{i=1}^m (X_i - \bar{X}_m)^2$ and $S_Y^2 = \sum_{i=1}^n (Y_i - \bar{Y}_n)^2$
 $U = \frac{\sqrt{m+n-2} (\bar{X}_m - \bar{Y}_n)}{(\frac{1}{m} + \frac{1}{n})^{1/2} (S_X^2 + S_Y^2)^{1/2}}$

▶ Theorem 9.6.1: If $\mu_1 = \mu_2$ then $U \sim t_{m+n-2}$

Theorem 9.6.4: For any μ₁ and μ₂, U has the non-central t_{m+n-2} distribution with non-centrality parameter

$$\psi = \frac{\mu_1 - \mu_2}{\sigma(1/m + 1/n)^{1/2}}$$

Two-sample t test - summary

a)
$$H_0: \mu_1 \le \mu_2$$
 vs. $H_1: \mu_1 > \mu_2$
• Level α_0 test: Reject H_0 iff $U \ge T_{m+n-2}^{-1}(1-\alpha_0)$
• p-value: $1 - T_{m+n-2}(u)$
b) $H_0: \mu_1 \ge \mu_2$ vs. $H_1: \mu_1 < \mu_2$
• Level α_0 test: Reject H_0 iff $U \le T_{m+n-2}^{-1}(\alpha_0)$
• p-value: $T_{m+n-2}(u)$
c) $H_0: \mu_1 = \mu_2$ vS. $H_1: \mu_1 \ne \mu_2$
• Level α_0 test: Reject H_0 iff $|U| \ge T_{m+n-2}^{-1}(1-\alpha_0/2)$
• p-value: $2(1 - T_{m+n-2}(|u|))$
The two-sample t-test is a likelihood ratio test (see p. 592)

Two-sample t test - unequal variances

▶ We can extend the two sample *t*-test to a problem where the variances of the X_i 's and Y_j 's are not equal but the ratio of them is known, i.e. $\sigma_1^2 = k\sigma_2^2$ - Not very practical

In general, the problem where the variances are not equal is very hard.

- Proposed test-statistics do not have known distribution, but approximations have been obtained
- Example: The Welch statistic

$$V = \frac{\bar{X}_m - \bar{Y}_n}{\left(\frac{S_X^2}{m(m-1)} + \frac{S_Y^2}{n(n-1)}\right)^{1/2}}$$

can be approximated by a t distribution

• Example: The distribution of the likelihood ratio statistic can be approximated by the χ_1^2 distribution if the sample size is large enough

F-distributions

In light of the previous slide, it would be nice to have a test of whether the variances in the two normal populations are equal → need the F_{m,n} distributions

Definition

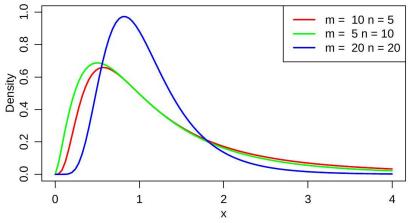
 $F_{m,n}\text{-distributions}$ Let $Y\sim \chi^2_m$ and $W\sim \chi^2_n$ be independent. The distribution of

$$X = \frac{Y/m}{W/n} = \frac{nY}{mW}$$

is called the F distribution with m and n degrees of freedom The pdf of the ${\cal F}_{m,n}$ distribution is

$$f(x) = \frac{\Gamma((m+n)/2)m^{m/2}n^{n/2}}{\Gamma(m/2)\Gamma(n/2)} \frac{x^{m/2-1}}{(mx+n)^{(m+n)/2}} \quad x > 0$$

F-distributions



▶ The 0.95 and 0.975 quantiles of the $F_{m,n}$ distribution is tabulated in the back of the book for a few combinations of mand n

Properties of F distributions

Theorem 9.7.2: Two properties (i) If $X \sim F_{m,n}$ then $1/X \sim F_{n,m}$ (ii) If $Y \sim t_n$ then $Y^2 \sim F_{1,n}$ Comparing the variances of two populations

•
$$X_1,\ldots,X_m$$
 i.i.d. $N\left(\mu_1,\sigma_1^2
ight)$ and

•
$$Y_1, ..., Y_n$$
 i.i.d. $N(\mu_2, \sigma_2^2)$

All four parameters unknown

Consider the hypotheses:

$$H_0:\sigma_1^2\leq\sigma_2^2$$
 vs $H_1:\sigma_1^2>\sigma_2^2$

and the test that rejects H_0 if $V \ge c$, where

$$V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$$

This test is called an F-test

•
$$\frac{\sigma_2^2}{\sigma_1^2}V \sim F_{m-1,n-1}$$

• If $\sigma_1^2 = \sigma_2^2$ then $V \sim F_{m-1,n-2}$

The F test

Let c be the $1 - \alpha_0$ quantile of the F distribution with m - 1 and n - 1 degrees of freedom, and let $G_{m-1,n-1}$ be the c.d.f. of that F distribution. Let δ be test that rejects H_0 in when $V \ge c$. The power function $\pi(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta)$ satisfies the following properties:

•
$$\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) = 1 - G_{m-1,n-1} \left(\frac{\sigma_2^2}{\sigma_1^2}c\right),$$

• $\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) = \alpha_0 \text{ when } \sigma_1^2 = \sigma_2^2$
• $\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) < \alpha_0 \text{ when } \sigma_1^2 < \sigma_2^2,$
• $\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) > \alpha_0 \text{ when } \sigma_1^2 > \sigma_2^2,$
• $\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) \to 0 \text{ as } \sigma_1^2 / \sigma_2^2 \to 0,$
• $\pi \left(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2 \mid \delta\right) \to 1 \text{ as } \sigma_1^2 / \sigma_2^2 \to \infty.$
The test δ has level α_0 . The *p*-value when $V = v$ is observed equals $1 - G_{m-1,n-1}(v)$

Comparing the variances of two populations

•
$$X_1, \ldots, X_m$$
 i.i.d. $N\left(\mu_1, \sigma_1^2\right)$ and

•
$$Y_1, ..., Y_n$$
 i.i.d. $N(\mu_2, \sigma_2^2)$

All four parameters unknown

Consider the hypotheses:

$$H_0:\sigma_1^2=\sigma_2^2$$
 vs $H_1:\sigma_1^2
eq\sigma_2^2$

and the test that rejects H_0 if $V \ge c$, where

$$V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$$

This test is called an F-test

•
$$\frac{\sigma_2^2}{\sigma_1^2}V \sim F_{m-1,n-1}$$

• If $\sigma_1^2 = \sigma_2^2$ then $V \sim F_{m-1,n-1}$

The two-sided F test

If we want to compare:

$$H_0: \sigma_1^2 = \sigma_2^2$$
 vs. $H_1: \sigma_1^2 \neq \sigma_2^2$

- We will reject H_0 if $V \leq c_1$ or $V \geq c_2$.
- ► Typically we choose c_1, c_2 such that $P(V \le c_1) = P(V \ge c_2) = \alpha_0/2.$
- ▶ Then, p-value $2 * min\{1 G_{m-1,n-1}(v), G_{m-1,n-1}(v)\}$, where v is the observed value of V.