Parametric Statistics

Sofia Triantafillou

sof.triantafillou@gmail.com

University of Crete Department of Mathematics and Applied Mathematics

Lecture Summary

- 8.4 The t-distributions
- 8.5 Confidence Intervals

Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152, 111, 141, 153, 190, 157, 131, 149, 135, 132

▶
$$\overline{X}_n = 156.85$$
, $\hat{\sigma}^2_{MLE}$
▶ Let's say I want to answer $P(|\overline{X}_n - \mu| < 5)$.
▶ If we know σ^2 , use CLT.

$$Z = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

• If we don't know σ^2 ?

The t distributions

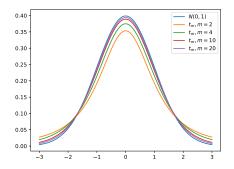
Let $Y \sim \chi_m^2$ and $Z \sim \mathcal{N}(0, 1)$ be independent. Then the distribution of $X = \frac{Z}{\left(\frac{Y}{m}\right)^{1/2}}$ is called the t distribution with m degrees of freedom, or t_m .

Pdf of the t distribution:

$$\frac{\Gamma(\frac{m+1}{2})}{(m\pi)^{1/2}\Gamma(\frac{m}{2})}(1+\frac{x^2}{m})^{-(m+1)/2}, -\infty < x < \infty$$

No closed form CDF, tabulated at the end of statistics books

Relation to the normal distribution



▶ If $X \sim t_m$ then

- E(X) = 0 if m > 1, does not exist otherwise.
- ▶ $Var(X) = \frac{m}{m-2}$ if m-2 > 0, does not exist otherwise.
- As $n \to \infty$, t_n converges in pdf to $\mathcal{N}(0,1)$.

Relation to samples of a normal distribution

Theorem (8.4.2)

Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$ and let \overline{X}_n be the sample mean, and define

$$S_n = \left(\frac{\sum_{i=1}^n (X_i - \overline{X}_n)^2}{n-1}\right)^{1/2}$$

Then $n^{1/2}(\overline{X}_n - \mu)/S_n)$ follows the *t* distribution with n-1 degrees of freedom.

Notice that S_n is not the MLE for σ, but (n-1/n)^{1/2} ô_{MLE}
 For large n, ô_{MLE} and S_n are close.

Review

• Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$ • If you know μ but not σ^2

$$rac{n\hat{\sigma}_{MLE}^2}{\sigma^2}\sim\chi_n^2,$$
 where $\hat{\sigma}_{MLE}^2$ is the MLE for σ^2

 \blacktriangleright If you do not know μ or $\sigma^2,$ then

$$rac{nS_n}{\sigma^2}\sim\chi^2_{n-1},$$
 where $S_n=rac{\sum(X_i-\overline{X}_n)^2}{n}$ is the MLE for σ^2

$$n^{1/2}(\overline{X}_n-\mu)/S_n \sim t_{n-1}, \text{ where } S_n = \left(\frac{\sum (X_i - \overline{X}_n)^2}{n-1}\right)^{1/2}$$

Back to our Example

Data on calorie content in 20 different beef hot dogs from Consumer Reports (June 1986 issue):

186, 181, 176, 149, 184, 190, 158, 139, 175, 148,

152, 111, 141, 153, 190, 157, 131, 149, 135, 132

•
$$\overline{X}_n = 156.85, \ S_n = 98.69$$

- How confident am I in my $\hat{\mu}$ estimate?
- I know that

$$U = \frac{n^{1/2}(\overline{X}_n - \mu)}{S_n} \sim t_{n-1}$$

▶ I can compute P(-c < U < c).

Confidence Intervals

I can compute

$$P(\overline{X}_n - \frac{cS_n}{n^{1/2}} < \mu < \overline{X}_n + \frac{cS_n}{n^{1/2}})$$

Definition (Confidence Interval)

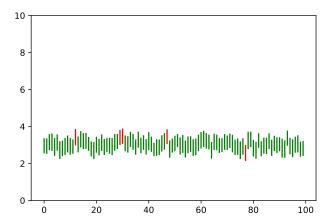
Let X_1, \ldots, X_n be a random sample from $f(x|\theta)$, where θ is unknown. Let $g(\theta)$ be a real-valued function, and let A and B be statistics where $P(A < g(\theta) < B) \geq \gamma \quad \forall \theta$. Then the random interval (A, B) is called a $100\gamma\%$ confidence interval for $g(\theta)$. If equality holds, the CI is exact.

- ▶ Notice: *A*, *B* are random variables.
- After a random sample is observed, A, B take specific values a and b. The interval (a, b) is then called the observed value of the confidence interval.

Confidence Intervals: Interpretation

- ► After observing our sample, we find that (a, b) is our 95%-Cl for µ.
- ► This does not mean that P(a < µ < b) = 0.95. In fact, we can not make such statements if we consider µ to be a number (frequentist view).</p>
- We can think of our interpretation as repeated samples.
 - Take a random sample of size n from $\mathcal{N}(\mu, \sigma^2)$.
 - Compute (a, b).
 - Repeat many times.
 - There is a 95% chance for the random intervals to include the value of µ.

Confidence Intervals - the zipper plot



Confidence Intervals

- ▶ More generally we want to find $P(c_1 < U < c_2) = \gamma$
- Symmetric confidence intervals: Equal probability on both sides: P(U ≤ c₁) = P(U ≥ c₂) = ^{1−γ}/₂
- One-sided confidence interval: All the extra probability is on one side.
- ▶ $c_1 = -\infty$ or $c_2 = \infty$.

One-sided Confidence Intervals

Definition (Lower Confidence Limit) Let A be a statistic so that

 $P(A < g(\theta)) \geq \gamma \quad \forall \theta$

The random interval (A, ∞) is a one-sided $100\gamma\%$ confidence interval for $g(\theta)$. A is a $100\gamma\%$ lower confidence limit for $g(\theta)$

Definition (Upper Confidence Limit)

Let B be a statistic so that

$$P(g(\theta) < B) \ge \gamma \quad \forall \theta$$

The random interval $(-\infty, B)$ is a one-sided $100\gamma\%$ confidence interval for $g(\theta)$. B is a $100\gamma\%$ upper confidence limit for $g(\theta)$

Pivotal

Definition (Pivotal)

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from a distribution that depends on parameter θ . Let $V(\mathbf{X}, \theta)$ be a random variable whose distribution is the same for all θ . Then V is called a pivotal quantity. To use this we need to be able to invert the pivotal relationship:

find a function $r(v, \mathbf{x})$ so that

$$r(V(\mathbf{X}, \theta), \mathbf{X}) = g(\theta)$$

If the r function is increasing in v for every ${\bf x},V$ has a continuous distribution with cdf F(v) and $\gamma_2-\gamma_1=\gamma$, then

$$oldsymbol{A}=r\left(F^{-1}\left(\gamma_{1}
ight),\mathbf{X}
ight)$$
 and $B=r\left(F^{-1}\left(\gamma_{2}
ight),\mathbf{X}
ight)$

are the endpoints of an exact $100\gamma\%$ confidence interval (Theorem 8.5.3).

Variance of the normal distribution $X_1, ..., X_n$ i.i.d. $N(\mu, \sigma^2)$, both unknown.

- Find a symmetric $\gamma\%$ confidence interval for σ^2
- \blacktriangleright Find the observed symmetric $\gamma\%$ confidence interval for σ^2 for the hotdog example

Practice Exercises

8.4 2 8.5 2,3,4,7