## Lecture Summary

- 8.1 Sampling Distributions
- 8.2 The Chi-Square Distributions
- 8.3 Joint Distribution of the Sample Mean and the Sample Variance

### Recap: Unbiased Estimators

- Let  $X_1, \ldots, X_n$  be a random sample from  $Expo(\lambda)$ .
- Find  $\hat{\lambda}_{MLE}$ .
- Find  $\hat{\lambda}_{MOM}$ .
- Are they unbiased?
- Find the MSE of each estimator
- Are they consistent?



- $\hat{\lambda}_{MLE}$  is a function of  $X_1, \ldots, X_n$ .
- lt has a sampling distribution that depends on the value of  $\lambda$ .
- Assume that you want to estimate how probable it is that you will make a mistake of more than 0.1.
- You want to estimate  $P(|\hat{\lambda}_{MLE} \lambda|\lambda)$
- For every possible λ, you can compute P(|λ̂<sub>MLE</sub> − λ|λ) based on the sampling distribution of ∑<sup>n</sup><sub>i=1</sub> X<sub>i</sub>

### Sampling Distributions

- Suppose  $X = (X_1, ..., X_n)$  is a random sample from  $f(x|\theta)$ .
- A function  $r(X_1, \ldots, X_n)$  is a statistic.
- A sampling distribution: the distribution of a statistic (given θ).
- Can use the sampling distributions to compare different estimators and to determine the sample size we need.
- Used to get confidence intervals and to do hypothesis testing.
- Leads to definitions of new distributions, e.g.  $\chi^2_m$  and  $t_m$ .

# The $\chi^2$ distributions

#### Definition

The  $\chi^2$  distribution with *m* degrees of freedom is the *Gamma*( $a = m/2, \beta = 1/2$ ). The pdf is

$$f(x|m) = \frac{1}{2^{m/2} \Gamma(m/2)} x^{m/2-1} e^{-x/2}$$



If  $X \sim \chi_m^2$  then  $\blacktriangleright E(X) = m$  $\blacktriangleright Var(X) = 2m$ 

> ) ९ (∾ 5 / 12

## Properties of the $\chi^2$ distributions

#### Theorem (8.2.1)

Let  $X_1, \ldots, X_n$  be independent random variables and  $X_i \sim \chi^2_{m_i}$ . Then

$$X_1 + \dots + X_n \sim \chi_m^2$$

where 
$$m = m_1 + \cdots + m_n$$
.

▶ follows from Theorem 5.7.7.

Theorem (8.2.2) If  $X \sim \mathcal{N}(0, 1)$ , then  $X^2 \sim \chi_1^2$ 

## Properties of the $\chi^2$ distributions

Corollary (8.2.1)

If the random variables  $X_1, \ldots, X_n$  i.i.d.,  $X_i \sim \mathcal{N}(0, 1)$  then

$$X_1^2 + \dots + X_n^2 \sim \chi_n^2$$

The  $\chi^2_m$  distribution is a sampling distribution related to the sample variance of a normal distribution:

• If  $X_1, \ldots, X_n$  are i.i.d,  $X_i \sim \mathcal{N}(\mu, \sigma^2)$ , where  $\mu$  is known and the MLE of  $\sigma^2$  is

$$\sigma_{MLE}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$



$$\frac{n\sigma_{MLE}^2}{\sigma^2} \sim \chi_n^2$$

Sampling Distributions of the normal sample mean and variance

Let  $X_1, \ldots, X_n$  be a random sample from a  $\mathcal{N}(\mu, \sigma^2)$  with unknown  $\mu, \sigma^2$ .

The sample mean and the sample variance are defined as

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

• They are the MLEs for  $\mu$  and  $\sigma^2$  in this setting.

#### Theorem (8.3.1)

Let  $X_1, \ldots, X_n$  be a random sample from  $\mathcal{N}(\mu, \sigma^2)$ . Then  $\bar{X}_n$  and  $S_n$  are independent random variables and  $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ ,  $\frac{nS_n}{\sigma^2} \sim \chi^2_{n-1}$ .

Sampling Distribution of the sample mean and variance

Theorem (8.3.1)

Let  $X_1, \ldots, X_n$  be a random sample from  $N(\mu, \sigma^2)$ . Then  $\overline{X}_n$  and  $S_n$  are independent random variables and

$$\overline{X_n} \sim \mathcal{N}(\mu, \sigma^2/n),$$

$$\frac{n}{\sigma^2}S_n = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X}_n)^2 \sim \chi_{n-1}^2$$

• Replacing  $\mu$  by  $\overline{X}_n$  results in one less degree of freedom.

▶  $\overline{X}_n$  and  $S_n$  are functions of the same random variables, but they are independent (this only happens when the random sample is drawn from a normal distribution).

## Recap

- Today we discussed samples of normal distributions:
- MLE estimators of  $\mu$  and  $\sigma^2$  in different settings.
- Sampling distributions of these estimators.
- Sample mean and sample variance are independent! (see an example in section 8.3 of your book)

### Question: Bounding errors in estimates

- Suppose that X<sub>1</sub>,..., X<sub>m</sub> form a random sample from the normal distribution with unknown mean μ and unknown variance σ<sup>2</sup>.
- Assuming that the sample size n is 16, determine the values of the following probabilities:

$$P(0.5\sigma^2 \le \hat{\sigma_0^2} \le 2\sigma^2)$$
  
 $P(0.5\sigma^2 \le S_n \le 2\sigma^2)$ 

Can you find the smallest value of n such that

$$P(0.5\sigma^2 \le S_n \le 2\sigma^2) \ge 0.9?$$

### Practice Exercises

8.1 1, 2 8.2 1, 4, 9 8.3 1, 6, 8