Lecture Summary

7.6 Properties of MLE Distributions

8.7 Properties of Estimators

Example

- Let X₁,..., X_n be a random sample from Bern(θ).
 f_n(x₁,..., x_n; θ) = Πⁿ_{i=1}θ^{x_i}(1 − θ)^{1−x_i}
 LL(x₁,..., x_n; θ) =
- Set $d\mathcal{L}\mathcal{L}/d\theta = 0$

Computation

- In many practical situations the maximization we need is not available analytically or too cumbersome.
- There exist many numerical optimization methods, Newton's Method (see definition 7.6.2) is one example.

Example: $Gamma(\alpha, 1)$

Assume you have samples x_1, \ldots, x_n from a $Gamma(\alpha, 1)$ distribution. Find $\hat{\alpha}$

Method of Moments

Method of Moments (MOM)

Let X₁,..., X_n be i.i.d. from f(x | θ) where θ is k dimensional.
 The jth sample moment is defined as m_j = 1/n ∑_{i=1}ⁿ X_i^j
 Method of moments (MOM) estimator: match the theoretical moments and the sample moments and solve for parameters:

$$m_{1} = E\left(X_{1} \mid \theta\right), m_{2} = E\left(X_{1}^{2} \mid \theta\right), \dots, m_{k} = E\left(X_{1}^{k} \mid \theta\right)$$

- Example: - Let X_1, \ldots, X_n be i.i.d. Gamma (α, β) . Then

$${\sf E}({\sf X})=rac{lpha}{eta} \quad ext{ and } \quad {\sf E}\left({\sf X}_2
ight)=rac{lpha(lpha+1)}{eta^2}$$

Find the MOM estimator of α and β . Find the MOM estimator for $Uniform([\theta, \theta + 1])$

Properties of Estimators

Reminder

An estimator $\hat{\theta}_n = g(X_1, \ldots, X_n)$ is a function of random variables X_1, \ldots, X_n and therefore has a distribution. The distribution of $\hat{\theta}_n$ is called sampling distribution.

Unbiased estimator

An estimator is unbiased if $E(\hat{\theta}_n) = \theta$. $E(\hat{\theta}_n) - \theta$ is called the *bias* of the estimator.

Consistent estimator

An estimator is consistent if $\theta_n \xrightarrow{p} \theta$.

Example

Bernoulli MLE $\hat{\theta}_{MLE} = \sum_{i=1}^{n} x_i$. Is it unbiased? Is it consistent?

Properties of Estimators (II)

Asymptotically normal

An estimator is asymptotically normal if

$$\hat{\theta}_n \xrightarrow{d} \mathcal{N}(\theta, Var(\hat{\theta}_n))$$

Mean squared error of an estimator The mean squared error of an estimator is

$$E[(\hat{\theta}_n - \theta)^2] = bias^2(\hat{\theta}_n) + Var(\hat{\theta}_n)$$

Example

What is the mean squared error of the Bernoulli MLE estimator?

Under some regularity conditions, the MLE estimators are

- Consistent
- Asymptotically Normal

The MLE estimators also have another property:

Invariance

If $\hat{\theta}_n$ is the MLE for θ , $g(\hat{\theta}_n)$ is the MLE for $g(\theta)$.

Properties of MOM estimators

Under some regularity conditions, the MOM estimators are

- Consistent
- Asymptotically Normal

Example

Find the following estimators for a Bernoulli distribution:

- ► MLE estimator $\hat{\theta}_{MLE}$
- MOM estimator $\hat{\theta}_{MOM}$
- ▶ Bayesian estimator that minimizes squared error loss $\hat{\theta}_{Bayes}$
- Are they unbiased?
- What is the mean squared error for each of the estimators?
- Are they consistent?